One molecule to block both pain and itch

May 22, 2014, Duke University
An antibody that specifically blocks the NaV1.7 voltage-gated sodium channel and suppresses pain in mice has surprisingly been found to also suppress itching in mice, even though pain and itch sensations usually follow different paths. Credit: Illustration: Seok-Yong Lee and Ben Chung, Duke University

Duke University researchers have found an antibody that simultaneously blocks the sensations of pain and itching in studies with mice.

The new antibody works by targeting the voltage-sensitive sodium channels in the cell membrane of neurons. The results appear online on May 22 in Cell.

Voltage-sensitive sodium channels control the flow of through the neuron's membrane. These channels open and close by responding to the electric current or action potential of the cells. One particular type of sodium channel, called the Nav1.7 subtype, is responsible for sensing pain.

Mutations in the human gene encoding the Nav1.7 sodium channel can lead to either the inability to sense pain or pain hypersensitivity. Interestingly, these mutations do not affect other sensations such as touch or temperature. Hence, the Nav1.7 sodium channel might be a very specific target for treating pain disorders without perturbing the patients' ability to feel other sensations.

"Originally, I was interested in isolating these sodium channels from cells to study their structure," said Seok-Yong Lee, assistant professor of biochemistry in the Duke University Medical School and principal investigator of the study. He designed that would capture the sodium channels so that he could study them. "But then I thought, what if I could make an antibody that interferes with the channel function?"

The team first tested the antibody in cultured cells engineered to express the Nav1.7 . They found that the antibody can bind to the channel and stabilize its closed state.

"The channel is off when it is closed," Lee explained. "Since the antibody stabilizes the closed state, the channel becomes less sensitive to pain." If this held true in live animals, then the animals would also be less sensitive to pain.

To test this idea, Lee sought the help of Ru-Rong Ji, professor of anesthesiology and neurobiology, who is an expert in the study of pain and sensation. Using laboratory mouse models of inflammatory and , they showed that the antibody can target the Nav1.7 channel and reduce the in these mice. More importantly, mice receiving the treatment did not show signs of physical dependence or enhanced tolerance toward the antibody.

"Pain and itch are distinct sensations, and pain is often known to suppress itch", said Ji.

The team found that the antibody can also relieve acute and chronic itch in mouse models, making them the first to discover the role of Nav1.7 in transmitting the itch sensation.

"Now we have a compound that can potentially treat both pain and itch at the same time," said Lee. Both of these symptoms are common in allergic contact dermatitis, which affects more than 10 million patients a year in the United States alone.

The team is pursuing a patent for the antibody.

"We hope our discovery will garner interest from pharmaceutical companies that can help us expand our studies into clinical trials," Lee said. Their goal is to develop a safer treatment for and itch as an alternative to opioids, which often cause addiction and other detrimental side effects.

Explore further: Select sodium channel blockers have anti-diabetic effects

More information: "A monoclonal antibody that targets a Nav1.7 channel voltage sensor for pain and itch relief," Jun-Ho Lee, Chul-Kyu Park, Gang Chen, Qingjian Han, Rou-Gang Xie, Tong Liu, Ru-Rong Ju and Seok-Yong Lee. Cell, May 23, 2014.

Related Stories

Select sodium channel blockers have anti-diabetic effects

May 15, 2014
(HealthDay)—Blockade of voltage-gated sodium channels (NaChs) in pancreatic α cells has anti-diabetic effects, according to research published online May 8 in Diabetes.

New insight into pain mechanisms

April 25, 2012
(Medical Xpress) -- Researchers in the UCL Wolfson Institute for Biomedical Research have made a discovery which could help the development of analgesic drugs able to treat nerve damage-related pain.

In a world of chronic pain, individual treatment possible, research shows

November 13, 2012
An investigation into the molecular causes of a debilitating condition known as "Man on Fire Syndrome" has led Yale researchers to develop a strategy that may lead to personalized pain therapy and predict which chronic pain ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.