Rice researcher rebooting 'deep brain stimulation'

May 27, 2014, Rice University
Caleb Kemere. Credit: Jeff Fitlow/Rice University

Deep brain stimulators, devices that zap Parkinson's disease tremors by sending electrical current deep into nerve centers near the brain stem, may sound like they are cutting-edge, but Rice University's Caleb Kemere wants to give them a high-tech overhaul.

Kemere, who's equal parts electrical engineer and neuroscientist, specializes in building electronic devices that interact with the . One longtime area of interest is the , the part of the brain that helps govern movement; it's also the nerve center targeted by "deep brain stimulation" (DBS) , a neuroelectronic device that's sometimes used to treat patients in the late stages of Parkinson's.

Thanks to a new five-year grant from the National Science Foundation (NSF), Kemere is about to embark on a program to reboot DBS technology with the latest embedded processors and research analytics. The research is funded by an NSF CAREER Award. The NSF gives only about 400 CAREER Awards each year across all disciplines. The program is designed to support the research and career development for young scholars that the agency expects to become leaders in their field. Each award includes about $400,000 in research funding.

"Deep brain stimulation has proven to be remarkably effective in treating Parkinson's, and it may well turn out to be revolutionary for treating severe depression and other neurological and psychiatric disorders," said Kemere, assistant professor of electrical and computer engineering and director of Rice's Realtime Neural Engineering Laboratory.

DBS systems, which are sometimes called "brain pacemakers," deliver a small, continuous current to the basal ganglia of late-stage Parkinson's patients. The technology can produce dramatic results and it allows some Parkinson's patients to walk, speak, write and perform other motor movements that are exceedingly challenging when the device is switched off.

"Today's DBS technology is basically the same as that used in heart pacemakers," Kemere said. "The electrodes are just implanted inside the brain rather than in the heart. I've found that when electrical engineers like myself first hear about DBS, they generally have the same two thoughts: 'Wow, that's a really cool use of electronics,' and 'The brain doesn't pulse like a heart; maybe we can improve this by matching the stimulation to the dynamic nature of the brain!'

"It's that second idea that we're focused on here," said Kemere, who is also an adjunct assistant professor of neurology at Baylor College of Medicine. "We want to develop technology that operates on the order of milliseconds, actively detecting what's going on in the brain at any moment and then modulating the stimulation to optimize results. In electrical engineering terms, we call this 'closing the feedback loop.'"

Kemere said today's DBS systems are manually adjusted by neurologists when a patient comes in for an office visit every few weeks or months. In his next-generation DBS, these types of adjustments would be made automatically, many times each second.

"There are several reasons we want to do this," Kemere said. "Though DBS is remarkably effective today, it provides only minimal therapeutic benefit for perhaps a third of Parkinson's patients. It's possible that dynamic DBS could substantially increase effectiveness for these users.

"Also, current DBS technology has side effects, and we'd like to reduce those," Kemere said. "For example, people with Parkinson's have a spectrum of symptoms, including tremors, trouble initiating muscle movement, muscle rigidity and slowness of movement. Sometimes, DBS can relieve one of those symptoms but make another one worse."

Rebooting DBS technology won't be simple. For starters, the real-time computer processing required for dynamic DBS will require power, and power always comes at a premium in implanted medical devices. For example, the battery packs in current DBS systems last for about 10 years, and getting the same kind of battery life from a dynamic system will require a great deal of upfront work to develop low-power embedded microprocessors.

Another research track will involve creating algorithms to properly interpret the incoming neural signals from the brain. Kemere's research group will rely heavily on experiments with rats to create, test and refine systems that can correctly interpret incoming neural signals and respond accordingly.

"We think we can optimize DBS stimulation and maximize its therapeutic benefit if we can better understand how information flows in the cortical-basal ganglia circuits in healthy brains, how those flows are disrupted by Parkinson's disease and how DBS can alter those flows," Kemere said.

Explore further: Deep brain stimulation for obsessive-compulsive disorder releases dopamine in the brain

Related Stories

Deep brain stimulation for obsessive-compulsive disorder releases dopamine in the brain

April 30, 2014
Some have characterized dopamine as the elixir of pleasure because so many rewarding stimuli - food, drugs, sex, exercise - trigger its release in the brain. However, more than a decade of research indicates that when drug ...

Neurosurgeon provides 'asleep' option for patients undergoing DBS surgery

September 11, 2013
Patients who undergo deep brain stimulation (DBS) surgery to control life-disrupting symptoms caused by Parkinson's disease and other movement disorders traditionally have been awake during the procedure. Today, patients ...

Parkinson's patients utilization of deep brain stimulation treatment reduced in demographic groups

January 3, 2014
Among Parkinson's disease (PD) patients, female, black, Asian and patients are substantially less likely to receive proven deep brain stimulation (DBS) surgery to improve tremors and motor symptoms, according to a new report ...

Responsive brain stimulation could improve life for Parkinson's sufferers

July 15, 2013
(Medical Xpress)—Researchers in Oxford have demonstrated a significant improvement in the treatment of advanced Parkinson's disease with deep brain stimulation.

Next-generation brain stimulation may improve treatment of Parkinson's disease

October 19, 2011
Parkinson's disease (PD) is a devastating and incurable disease that causes abnormal poverty of movement, involuntary tremor, and lack of coordination. A technique called deep brain stimulation (DBS) is sometimes used to ...

Less-invasive method of brain stimulation helps patients with Parkinson's disease

October 16, 2012
Electrical stimulation using extradural electrodes—placed underneath the skull but not implanted in the brain—is a safe approach with meaningful benefits for patients with Parkinson's disease, reports the October issue ...

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Roxanne
not rated yet May 28, 2014
great news! Dear researchers, please consider implications of this study to other neurological conditions, e.g., Down syndrome. helping those living with DS can increase their independence and decrease the costs for healthcare systems--thanks!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.