Study urges caution in stem cell clinical trials for heart attack patients

May 7, 2014, Cincinnati Children's Hospital Medical Center
Myocardial Infarction or Heart Attack. Credit: Blausen Medical Communications/Wikipedia/CC-A 3.0

A new study in Nature challenges research data that form the scientific basis of clinical trials in which heart attack patients are injected with stem cells to try and regenerate damaged heart tissue.

Researchers at Cincinnati Children's Hospital Medical Center and the Howard Hughes Medical Institute (HHMI), report May 7 that cardiac used in ongoing clinical trials – which express a protein marker called c-kit – do not regenerate contractile at high enough rates to justify their use for treatment.

Including collaboration from researchers at Cedars-Sinai Heart Institute in Los Angeles and the University of Minnesota's Lillehei Heart Institute, the study uncovers new evidence in what has become a contentious debate in the field of cardiac regeneration, according to Jeffery Molkentin, PhD, study principal investigator and a cardiovascular molecular biologist and HHMI investigator at the Cincinnati Children's Heart Institute.

"Our data suggest any potential benefit from injecting c-kit-positive into the hearts of patients is not because they generate new contractile cells called cardiomyocytes," Molkentin said. "Caution is warranted in further clinical testing of this method until the mechanisms in play here are better defined or we are able to dramatically enhance the potential of these cells to generate cardiomyocytes."

Numerous heart attack patients have already been treated with c-kit-positive stem cells that are removed from healthy regions of a damaged heart then processed in a laboratory, Molkentin explained. After processing, the cells are then injected into these patients' hearts. The experimental treatment is based largely on preclinical studies in rats and mice suggesting that c-kit-positive stem cells completely regenerate myocardial cells and heart muscle. Thousands of patients have also previously undergone a similar procedure for their hearts but with bone marrow stem cells.

Molkentin and his colleagues report those previous preclinical studies in rodents do not reflect what really occurs within the heart after injury, where internal regenerative capacity is almost non-existent. Molkentin also said that combined data from multiple clinical trials testing this type of treatment show most patients experienced a roughly 3-5 percent improvement in heart ejection fraction – a measurement of how forcefully the heart pumps blood. Data in the current Nature study suggest this small benefit may come from the ability of c-kit-positive stem cells in heart to cause the growth of capillaries, which improves circulation within the organ, but not by generating new cardiomyocytes.

"What we show in our study is that c-kit-positive stem cells from the heart like to make endothelial cells that form capillaries. But in their natural environment in the heart, these c-kit positive cells do not like to make cardiomyocytes," Molkentin said. "They will produce cardiomyocytes, but at rates so low – roughly one in every 3,000 cells – it becomes meaningless."

The c-kit protein is expressed on the surface of progenitor cells originally identified in bone marrow. These c-kit expressing cells can generate multiple different cell types that are destined to help form specific organ tissues or other parts of the body. Given its presence in bone marrow, c-kit cells are also involved in the production of different types of .

Researchers in the current study worked with two lines of genetically bred mice to see how efficiently c-kit-positive cardiac would regenerate cardiomyocytes in the hearts of the animals. The authors measured heart cell regeneration rates during the animals' embryonic development, during aging and after myocardial infarction (heart attack).

The mice were bred so that a fluorescent protein marker was permanently added to any cell that expressed the Kit gene, regardless of what it then turned into. This allowed the scientists to track the specific types and volumes of any c-kit-positive cells being generated in the animals, including in their hearts.

Test results showed that c-kit-positive cells originating in the heart generated new cardiomyocytes at a percentage (from baseline) of 0.03 or less. The authors go on to report that the percentage of new cardiomyocyte generation actually falls to below 0.008 when considering a natural process called cellular fusion – which in this instance involves c-kit-positive cells from the or circulating immune system cells fusing with cardiomyocytes in the heart.

As a follow up to the current study, Molkentin and his colleagues are currently testing genes and protein growth factors that may be able to boost the rate of new cardiomyocyte generation from c-kit-positive stem cells. Because the current study shows that endogenous c-kit cells at least have some limited ability to regenerate contractile heart cells, Molkentin said it may be possible to find a method to enhance this ability genetically so the cells can eventually be used in a truly therapeutically beneficial manner to make new contractile activity in the .

Explore further: Stem cell therapy regenerates heart muscle damaged from heart attacks in primates

More information: Paper: c-kit+ cells minimally contribute cardiomyocytes to the heart, dx.doi.org/10.1038/nature13309

Related Stories

Stem cell therapy regenerates heart muscle damaged from heart attacks in primates

April 30, 2014
Heart cells created from human embryonic stem cells successfully restored damaged heart muscles in monkeys. The results of the experiment appear in the April 30 advanced online edition of the journal Nature in a paper titled, ...

Researchers identify how heart stem cells orchestrate regeneration

May 6, 2014
Investigators at the Cedars-Sinai Heart Institute – whose previous research showed that cardiac stem cell therapy reduces scarring and regenerates healthy tissue after a heart attack in humans – have identified components ...

Mouse study points to potentially powerful tool for treating damaged hearts

April 30, 2014
A type of cell that builds mouse hearts can renew itself, Johns Hopkins researchers report. They say the discovery, which likely applies to such cells in humans as well, may pave the way to using them to repair hearts damaged ...

Stem cells boost heart's natural repair mechanisms

January 30, 2013
Injecting specialized cardiac stem cells into a patient's heart rebuilds healthy tissue after a heart attack, but where do the new cells come from and how are they transformed into functional muscle?

The birth of new cardiac cells

December 5, 2012
Recent research has shown that there are new cells that develop in the heart, but how these cardiac cells are born and how frequently they are generated remains unclear. In new research from Brigham and Women's Hospital (BWH), ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.