Blocking key enzyme minimizes stroke injury, study finds

June 26, 2014, UT Southwestern Medical Center
Dr. James Bibb is an associate professor of Neurology and Neurotherapeutics at UT Southwestern and senior author of the study. Credit: UT Southwestern Medical Center

A drug that blocks the action of the enzyme Cdk5 could substantially reduce brain damage if administered shortly after a stroke, UT Southwestern Medical Center research suggests.

The findings, reported in the June 11 issue of the Journal of Neuroscience, determined in rodent models that aberrant Cdk5 activity causes nerve cell death during stroke.

"If you inhibit Cdk5, then the vast majority of brain tissue stays alive without oxygen for up to one hour," said Dr. James Bibb, Associate Professor of Neurology and Neurotherapeutics at UT Southwestern and senior author of the study. "This result tells us that Cdk5 is a central player in nerve cell death."

More importantly, development of a Cdk5 inhibitor as an acute neuroprotective therapy has the potential to reduce stroke injury.

"If we could block Cdk5 in patients who have just suffered a stroke, we may be able to reduce the number of patients in our hospitals who become disabled or die from stroke. Doing so would have a major impact on health care," Dr. Bibb said.

While several pharmaceutical companies worked to develop Cdk5 inhibitors years ago, these efforts were largely abandoned since research indicated blocking Cdk5 long-term could have detrimental effects. At the time, many scientists thought aberrant Cdk5 activity played a major role in the development of Alzheimer's disease and that Cdk5 inhibition might be beneficial as a treatment.

Based on Dr. Bibb's research and that of others, Cdk5 has both good and bad effects. When working normally, Cdk5 adds phosphates to other proteins that are important to healthy brain function. On the flip side, researchers have found that aberrant Cdk5 activity contributes to nerve cell death following brain injury and can lead to cancer.

"Cdk5 regulates communication between and is essential for proper . Therefore, blocking Cdk5 long-term may not be beneficial," Dr. Bibb said. "Until now, the connection between Cdk5 and stroke injury was unknown, as was the potential benefit of acute Cdk5 inhibition as a therapy."

In this study, researchers administered a Cdk5 inhibitor directly into dissected slices after adult rodents suffered a stroke, in addition to measuring the post-stroke effects in Cdk5 knockout mice.

"We are not yet at a point where this new treatment can be given for stroke. Nevertheless, this research brings us a step closer to developing the right kinds of drugs," Dr. Bibb said. "We first need to know what mechanisms underlie the disease before targeted treatments can be developed that will be effective. As no Cdk5 blocker exists that works in a pill form, the next step will be to develop a systemic drug that could be used to confirm the study's results and lead to a clinical trial at later stages."

Currently, there is only one FDA-approved drug for acute treatment of , the clot-busting drug tPA. Other treatment options include neurosurgical procedures to help minimize .

Explore further: Research finds enzyme disrupting nerve cell communication in Alzheimer's disease

Related Stories

Research finds enzyme disrupting nerve cell communication in Alzheimer's disease

August 15, 2011
Alzheimer's disease is characterized by abnormal proteins that stick together in little globs, disrupting cognitive function (thinking, learning, and memory). These sticky proteins are mostly made up of beta-amyloid peptide. ...

Researchers find overexpressed protein to be culprit in certain thyroid cancers

October 15, 2013
(Medical Xpress)—A specific protein once thought to exist only in the brain may play a crucial role in a deadly form of thyroid cancer, as well as other cancers, and provide a fresh target for researchers seeking ways to ...

Scientists slow development of Alzheimer's trademark cell-killing plaques

March 17, 2014
University of Michigan researchers have learned how to fix a cellular structure called the Golgi that mysteriously becomes fragmented in all Alzheimer's patients and appears to be a major cause of the disease.

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.