Gene mutation discovery could explain brain disorders in children

June 10, 2014, Monash University

Researchers have discovered that mutations in one of the brain's key genes could be responsible for impaired mental function in children born with an intellectual disability.

The research, published today in the journal, Human Molecular Genetics, proves that the gene, TUBB5, is essential for a healthy functioning .

It's estimated that affects up to four per cent of people worldwide, and two per cent of all Australians. One of the ways in which intellectual disability occurs is through genetic mutations, which cause problems with normal fetal .

During fetal brain development, TUBB5 is essential for the proper placement and wiring of new . When the gene is mutated, the brain, which sends and receives messages to the rest of the body, is impaired.

Lead researcher, Dr Julian Heng, from the Australian Regenerative Medicine Institute (ARMI) at Monash University, said to TUBB5 could be responsible for a range of intellectual disabilities. It could also affect the development of basic motor skills such as walking.

"TUBB5 works like a type of scaffolding inside neurons, enabling them to shape their connections to other neurons, so it's essential for healthy brain development. If the scaffolding is faulty, in this case of TUBB5 mutates, it can have serious consequences," Dr Heng said.

These new findings build on the team's collaborative work with researchers in Austria, which led to the discovery of TUBB5 mutations in human brain disorders in 2012. By looking at just three unrelated patients with microcephaly, a rare brain disease in children, the team found striking similarities – each had a mutation to TUBB5. The team also provided the first evidence that the TUBB5 mutations were responsible for each patient's disorder.

Dr Heng said the research could have important implications, not only for intellectual disabilities but also for a wide range of developmental disorders.

"Learning more about the TUBB5 gene and its mutations could reveal how it shapes the connections of neurons in normal and diseased brain states.

"We're just at the beginning of this work but if we can understand why and how mutations occur to TUBB5, we may even be able to repair these . In the future, we believe this work will enable us to develop new therapies to transform people's lives," Dr Heng said.

The work may potentially lead to new information about the causes and possible treatments for other brain developmental syndromes, including autism, a condition that affects as many as 1 in 160 children.

Dr Heng said that because TUBB5 belongs to a family of genes which produce the scaffolding in neurons, it means that there is scope for further study into its impact.

"By learning what these scaffolding proteins do to help neurons make brain circuits, we might be able to pinpoint the underlying causes of a wide range of brain disorders in children, and develop more targeted treatments," Dr Heng said.

Scientists believe that in the future this knowledge, combined with techniques, could also aid the replacement of neurons in times of brain injury or disease.

The next phase of the research will be to develop a working model to better understand how TUBB5 can be targeted for gene therapy.

Explore further: A key gene for brain development

Related Stories

A key gene for brain development

December 14, 2012
(Medical Xpress)—Neurobiologists at the Research institute of Molecular Pathology (IMP) in Vienna have discovered one of the key genes required to make a brain. Mutations in this gene, called TUBB5, cause neurodevelopmental ...

Switching brain development on and off

January 30, 2014
(Medical Xpress)—The possibility of nerve cell regeneration is a step closer after neuroscientists identified the genetic signals that play a crucial role in normal development - driving stem cells to produce neurons that ...

Critical role of one gene to our brain development

March 14, 2014
(Medical Xpress)—New research from the University of Adelaide has confirmed that a gene linked to intellectual disability is critical to the earliest stages of the development of human brains.

Team first to map autism-risk genes by function

November 21, 2013
Pity the poor autism researcher. Recent studies have linked hundreds of gene mutations scattered throughout the brain to increased autism risk. Where do you start?

Two new genes linked to intellectual disability

March 31, 2014
Researchers at the Centre for Addiction and Mental Health have discovered two new genes linked to intellectual disability, according to two research studies published concurrently this month in the journals Human Genetics ...

Gene linked to common intellectual disability

November 13, 2013
(Medical Xpress)—University of Adelaide researchers have taken a step forward in unravelling the causes of a commonly inherited intellectual disability, finding that a genetic mutation leads to a reduction in certain proteins ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.