Gene linked to common intellectual disability

November 13, 2013

(Medical Xpress)—University of Adelaide researchers have taken a step forward in unravelling the causes of a commonly inherited intellectual disability, finding that a genetic mutation leads to a reduction in certain proteins in the brain.

ARX is among the top four types of intellectual disability linked to the X-chromosome in males. So far, 115 families, including many large Australian families, have been discovered to carry an ARX (Aristaless related homeobox) mutation that gives rise to intellectual disability.

"There is considerable variation in the disability across families, and within families with a single mutation. Symptoms among males always include intellectual disability, as well as a range of movement disorders of the hand, and in some cases severe seizures," says Associate Professor Cheryl Shoubridge, Head of Molecular Neurogenetics with the University of Adelaide's Robinson Institute.

ARX mutations were first discovered by the University of Adelaide's Professor Jozef Gecz in 2002. To date, researchers have detected 52 different ARX mutations and 10 distinct clinical syndromes.

Associate Professor Shoubridge is lead author of a new paper on ARX intellectual disability published in the journal Human Molecular Genetics.

In laboratory studies, Associate Professor Shoubridge's team has shown that mutations lead to a significant reduction in ARX proteins in the , but the actual causes and mechanisms involved in this remain unknown. Her team tested six genes that the ARX protein interacts with, and found that one of them - a gene likely to be important to - appears to be adversely affected by the reduction of ARX proteins.

"This plays an important role in setting up architecture and networks in the brain, which become disrupted due to the mutation", Associate Professor Shoubridge says.

"The discovery of this genetic link is an important step forward but there is still much work to be done. We're now looking further at the mechanism of the reduction in ARX protein and what that means for the brain at a functional level."

Associate Professor Shoubridge says up to 3% of the population is affected by some kind of , costing $14.7 billion each year in Australia alone.

"The personal cost to families is enormous, especially in the most severe cases. Being able to unravel why and how these disabilities occur is very important to us and to the many people whose lives are affected by these conditions," she says.

This research has been funded by the Australian Research Council (ARC) and the National Health and Medical Research Council (NHMRC).

Explore further: Protein regulation linked to intellectual disability

More information: Kristie Lee, Tessa Mattiske, Kunio Kitamura, Jozef Gecz, and Cheryl Shoubridge. "Reduced polyalanine-expanded Arx mutant protein in developing mouse subpallium alters Lmo1 transcriptional regulation," Hum. Mol. Genet. (2013) DOI: 10.1093/hmg/ddt503 : http://hmg.oxfordjournals.org/content/early/2013/10/22/hmg.ddt503

Related Stories

Protein regulation linked to intellectual disability

October 25, 2012
Genetics researchers at the University of Adelaide have solved a 40-year mystery for a family beset by a rare intellectual disability – and they've discovered something new about the causes of intellectual disability in ...

Study finds large proportion of intellectual disability is not genetically inherited

September 26, 2012
New research published Online First in The Lancet suggests that a high proportion of severe intellectual disability results from genetic causes that are not inherited. These findings are good news for parents, indicating ...

New form of intellectual disability discovered

April 27, 2012
Researchers at the Centre for Addiction and Mental Health (CAMH) led a study discovering a gene for a new form of intellectual disability, as well as how it likely affects cognitive development by disrupting neuron functioning.

Fragile X and Down syndromes share signalling pathway for intellectual disability

August 3, 2012
Intellectual disability due to Fragile X and Down syndromes involves similar molecular pathways report researchers in The EMBO Journal. The two disorders share disturbances in the molecular events that regulate the way nerve ...

Exome sequencing: Potential diagnostic assay for unexplained intellectual disability

November 8, 2012
Research findings confirming that de novo mutations represent a major cause of previously unexplained intellectual disability were presented on Nov. 8 at the American Society of Human Genetics 2012 meeting in San Francisco.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.