Gene linked to common intellectual disability

November 13, 2013, University of Adelaide

(Medical Xpress)—University of Adelaide researchers have taken a step forward in unravelling the causes of a commonly inherited intellectual disability, finding that a genetic mutation leads to a reduction in certain proteins in the brain.

ARX is among the top four types of intellectual disability linked to the X-chromosome in males. So far, 115 families, including many large Australian families, have been discovered to carry an ARX (Aristaless related homeobox) mutation that gives rise to intellectual disability.

"There is considerable variation in the disability across families, and within families with a single mutation. Symptoms among males always include intellectual disability, as well as a range of movement disorders of the hand, and in some cases severe seizures," says Associate Professor Cheryl Shoubridge, Head of Molecular Neurogenetics with the University of Adelaide's Robinson Institute.

ARX mutations were first discovered by the University of Adelaide's Professor Jozef Gecz in 2002. To date, researchers have detected 52 different ARX mutations and 10 distinct clinical syndromes.

Associate Professor Shoubridge is lead author of a new paper on ARX intellectual disability published in the journal Human Molecular Genetics.

In laboratory studies, Associate Professor Shoubridge's team has shown that mutations lead to a significant reduction in ARX proteins in the , but the actual causes and mechanisms involved in this remain unknown. Her team tested six genes that the ARX protein interacts with, and found that one of them - a gene likely to be important to - appears to be adversely affected by the reduction of ARX proteins.

"This plays an important role in setting up architecture and networks in the brain, which become disrupted due to the mutation", Associate Professor Shoubridge says.

"The discovery of this genetic link is an important step forward but there is still much work to be done. We're now looking further at the mechanism of the reduction in ARX protein and what that means for the brain at a functional level."

Associate Professor Shoubridge says up to 3% of the population is affected by some kind of , costing $14.7 billion each year in Australia alone.

"The personal cost to families is enormous, especially in the most severe cases. Being able to unravel why and how these disabilities occur is very important to us and to the many people whose lives are affected by these conditions," she says.

This research has been funded by the Australian Research Council (ARC) and the National Health and Medical Research Council (NHMRC).

Explore further: Protein regulation linked to intellectual disability

More information: Kristie Lee, Tessa Mattiske, Kunio Kitamura, Jozef Gecz, and Cheryl Shoubridge. "Reduced polyalanine-expanded Arx mutant protein in developing mouse subpallium alters Lmo1 transcriptional regulation," Hum. Mol. Genet. (2013) DOI: 10.1093/hmg/ddt503 : http://hmg.oxfordjournals.org/content/early/2013/10/22/hmg.ddt503

Related Stories

Protein regulation linked to intellectual disability

October 25, 2012
Genetics researchers at the University of Adelaide have solved a 40-year mystery for a family beset by a rare intellectual disability – and they've discovered something new about the causes of intellectual disability in ...

Study finds large proportion of intellectual disability is not genetically inherited

September 26, 2012
New research published Online First in The Lancet suggests that a high proportion of severe intellectual disability results from genetic causes that are not inherited. These findings are good news for parents, indicating ...

New form of intellectual disability discovered

April 27, 2012
Researchers at the Centre for Addiction and Mental Health (CAMH) led a study discovering a gene for a new form of intellectual disability, as well as how it likely affects cognitive development by disrupting neuron functioning.

Fragile X and Down syndromes share signalling pathway for intellectual disability

August 3, 2012
Intellectual disability due to Fragile X and Down syndromes involves similar molecular pathways report researchers in The EMBO Journal. The two disorders share disturbances in the molecular events that regulate the way nerve ...

Exome sequencing: Potential diagnostic assay for unexplained intellectual disability

November 8, 2012
Research findings confirming that de novo mutations represent a major cause of previously unexplained intellectual disability were presented on Nov. 8 at the American Society of Human Genetics 2012 meeting in San Francisco.

Recommended for you

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.