Scientists cast light on the brain's social cells

June 24, 2014
Neurons. Image credit: Denis Burdakov

Picture yourself hovering over an alien city with billions of blinking lights of thousands of types, with the task of figuring out which ones are connected, which way the electricity flows and how that translates into nightlife. Welcome to the deep brain.

Even in an era rapidly becoming known as the heyday of neuroscience, tracing the biochemical signaling among billions of neurons deep in the brain has remained elusive and baffling.

A team of Stanford University researchers managed to map out one such connection, buried inside the brain of a living, moving mammal as they manipulated its behavior. The feat offers an unprecedented close-up of the genesis of on a cellular level, and could offer insights into psychiatric puzzles such as autism, depression and anxiety.

"It's a new kind of data that no one has been able to get before - a single kind of cell projecting from one deep brain area to another deep brain area during behavior," said Stanford bioengineer and neuroscientist Karl Deisseroth, senior author of the study published online this week in the journal Cell.

Deisseroth's team relied on genetics, fiber-optics and a bunch of female mice.

The Deisseroth lab at Stanford had already pioneered the use of optogenetics in neuroscience, a technique that delivers light through a hair-thin probe to stimulate cells that have been modified with a light-sensitive gene. First demonstrated in 2007, optogenetic stimulation not only changed the scale and precision involved in exploring the brain, it allowed researchers to better discern cause and effect, which often were muddled by conventional imaging and detection devices.

Researchers soon began using the technique widely to manipulate the of laboratory animals. They discovered that stimulating one brain cell had a profound effect on behavior.

Finding out how this works, however, depended on tracing the connections, or "projections," from the stimulated neurons.

The deep brain is a very "noisy" place. The tiny voltage changes that propagate along axons, the slender fibers that extend from the nucleus of a neuron, are difficult to distinguish. Researchers routinely add fluorescent properties to the calcium ions that help drive these voltage change in axons, so they can "see" large-scale evidence of activity. But no one had been able to track that signal in an axon while an animal reacted to the stimulation.

"It's buried in the noise and it's too small to see in a behaving animal," Deisseroth said. "We've never been able to see it. We've never been able to observe how animals normally use projections."

The Stanford team tried a new trick. The researchers delivered the light at a specific frequency by chopping it up with what amounts to a fancy pinwheel. Since the fluoresce at the same frequency as the incoming light, the team designed a device to pick up only that signal. That allowed them to follow the signal in real time while they chronicled the animal's behavior. They call the new technique fiber photometry.

The rest was relatively simple rodent play. Lab members placed the probes in the areas they had altered for optogenetic stimulation, set up the detection instruments, then ran trials to test the mouse's reaction to other mice.

Explore further: Researchers tie social behavior to activity in specific brain circuit

Related Stories

Researchers tie social behavior to activity in specific brain circuit

June 19, 2014
A team of Stanford University investigators has linked a particular brain circuit to mammals' tendency to interact socially. Stimulating this circuit—one among millions in the brain—instantly increases a mouse's appetite ...

Seeing the inner workings of the brain made easier by new technique

June 19, 2014
Last year Karl Deisseroth, a Stanford professor of bioengineering and of psychiatry and behavioral sciences, announced a new way of peering into a brain – removed from the body – that provided spectacular fly-through ...

Team builds new 'off switch' to shut down neural activity

April 24, 2014
In 2005, a Stanford University scientist discovered how to switch brain cells on or off with light pulses by using special proteins from microbes to pass electrical current into neurons.

Studying behavior using light to control neurons

May 15, 2014
A new paper published by OIST's Neurobiology Research Unit identifies some of the neurons responsible for behavioral decisions in rats.

Researchers study alcohol addiction using optogenetics

December 16, 2013
Wake Forest Baptist Medical Center researchers are gaining a better understanding of the neurochemical basis of addiction with a new technology called optogenetics.

Recommended for you

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.