Innovative 'genotype first' approach uncovers protective factor for heart disease

July 31, 2014

Extensive sequencing of DNA from thousands of individuals in Finland has unearthed scores of mutations that destroy gene function and are found at unusually high frequencies. Among these are two mutations in a gene called LPA that may reduce a person's risk of heart disease. These findings are an exciting proof-of-concept for a new "genotype first" approach to identifying rare genetic variants associated with, or protecting from, disease followed by extensive medical review of carriers. The new study by researchers from the Broad Institute, Massachusetts General Hospital (MGH), the University of Helsinki, and an international team of collaborators appears in a paper published online July 31 in PLOS Genetics.

The researchers studied exomes—the portions of the genome that correspond to protein-coding genes—from 3,000 Finns and compared them to those of 3,000 non-Finnish Europeans. They identified 83 gene-deactivating variants that were at least twice as prevalent in Finns and went on to study these variants in over 35,000 Finns. Recent examples in , HIV, type 2 diabetes and Crohn's disease have demonstrated that such mutations – known as "loss-of-function" mutations – in some cases protect from, rather than cause, disease and thereby suggest new paths toward therapeutics.

Geneticists have known that Mendelian, recessive genetic diseases –such as Tay-Sachs or cystic fibrosis that are caused by a single, mutated gene – are more common in isolated populations because of a phenomenon known as "bottlenecking." When a small population is isolated for tens to hundreds of generations, the population's genetic diversity becomes restricted, and occasional rare genetic variations can by chance become much more common. While this has long been recognized as the source of the unique rare disease patterns seen in isolated populations, this paper demonstrates that the same principles can help researchers identify rare, loss-of-function variants in genome-wide association studies on these isolated populations.

In the current study, researchers chose to study modern Finns – a population that descended from a well-documented bottleneck that occurred around 4,000 years ago. Comparing Finns with their non-Finnish European counterparts gave the researchers strong, empirical data.

The LPA gene encodes Lipoprotein(a), a type of lipoprotein, first identified in 1963 and a known risk factor for heart disease. The variants described in this paper reduced levels of LPA gene expression causing lower levels of Lipoprotein(a) in the blood. The research team examined Finnish medical records and found that the loss-of-function variants were not associated with other health problems, making blocking LPA expression a potentially exciting therapeutic approach. The availability of centralized medical records available in Finland enabled the researchers to shift the paradigm of medical genetics to a "genotype first" approach.

"This new approach could significantly change how researchers analyze rare variants for complex diseases. It gives us a window into the genetics of complex diseases that we haven't had before," said co-senior author Mark Daly, co-director of the Program in Medical and Population Genetics at the Broad Institute and chief of the Analytic and Translational Genetics Unit for the Center for Human Genetic Research at MGH. "By combining the information from detailed with the information contained in the genomes of a bottlenecked population, we're uncovering rare variants that contribute to complex diseases."

Heart disease is a leading killer globally. The World Health Organization reports that cardiovascular disease was responsible for 30 percent of all global deaths, or 17.3 million people in 2008. Therapeutics able to specifically address this risk by targeting LPA could have a global impact on medical outcomes.

This work highlights the potential for using rare variant analysis in isolated populations to study complex diseases, an approach that had previously been largely limited to Mendelian traits. The approach can now be applied to other complex diseases that have many contributing genetic factors.

"We've illustrated the validity of this approach by identifying rare, loss-of-function variants with promising therapeutic potential for the treatment of heart disease, but this work also represents a reproducible approach that can be used to increase our understanding of other complex diseases as well," said co-senior author Aarno Palotie (Broad Institute, Massachusetts General Hospital, Harvard Medical School, Institute for Molecular Medicine Finland FIMM, University of Helsinki).

Explore further: Genetics that protects your heart

More information: PLoS Genetics, Online July 31, 2014. DOI: 10.1371/journal.pgen.1004494

Related Stories

Genetics that protects your heart

December 23, 2013
(Medical Xpress)—Researchers have found a key piece of the puzzle as to why an isolated population in Greece may live healthy lives. They have found that a genetic variant known to protect the heart is 40 times more common ...

Discovery may help to explain mystery of 'missing' genetic risk

February 13, 2014
A new study could help to answer an important riddle in our understanding of genetics: why research to look for the genetic causes of common diseases has failed to explain more than a fraction of the heritable risk of developing ...

A genetic map for complex diseases

September 26, 2013
Although heavily studied, the specific genetic causes of "complex diseases," a category of disorders which includes autism, diabetes and heart disease, are largely unknown due to byzantine genetic and environmental interactions.

New genetic analysis method holds promise for understanding causes of disease

December 17, 2013
(Medical Xpress)—University of Michigan School of Public Health researchers have developed a new method for identifying rare gene variants, which scientists now believe are more informative for human disease studies than ...

As population exploded, more rare genes entered human genome

May 11, 2012
(Medical Xpress) -- As the Earth's human population has skyrocketed since the rise of agriculture some 10,000 years ago -- to 7 billion people from a few million -- so, too, has the number of rare genetic variants.

Rare gene variants linked to inflammatory bowel disease

October 10, 2011
(Medical Xpress) -- An international team of scientists, including researchers from Karolinska Institutet, have identified several rare gene variants that predispose to IBD (Inflammatory Bowel Disease). The study provides ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.