HIV study leads to insights into deadly infection

July 8, 2014 by David Ellis, University of Adelaide

Research led by the University of Adelaide has provided new insights into how the HIV virus greatly boosts its chances of spreading infection, and why HIV is so hard to combat.

HIV infects by turning the infection-fighting proteins of these cells into a "backdoor key" that lets the virus in. Recent research has found that another protein is involved as well. A peptide in semen that sticks together and forms structures known as "amyloid " enhances the virus's infection rate by up to an astonishing 10,000 times.

How and why these fibrils enhance infection and cause toxicity in the body's cells remains unknown.

The HIV fibrils – known as "semen-derived enhancers of viral infection" (SEVI) – have been studied by chemistry and pharmacology researchers at the University of Adelaide. The results of this work have now been published online in the journal Biochimica et Biophysica Acta.

"Amyloid fibrils play an important role in a number of prominent diseases, such as Parkinson's, Alzheimer's and others, and it's absolutely essential that we understand how they work if we have any hope of developing new drugs to stop them," says lead author Dr Ian Musgrave, from the University's School of Medical Sciences.

In laboratory studies, the team found that the HIV fibrils are toxic towards cells from the nervous system. They also found that even when the fibril is broken apart, its constituent elements continue to be toxic.

"This suggests that you can't just prevent one part of SEVI from aggregating and being toxic to cells. You need to shut the whole thing down or stop it from forming in the first place," Dr Musgrave says.

Researchers also tested the fibrils against another major type of body tissue, epithelial cells, and found they were not toxic to these cells.

"Epithelial cells are a major barrier to HIV entry. There have been theories that the fibrils can damage the epithelial layer, making it much easier for the virus to enter the body and infect the immune cells, but our findings show that healthy are resistant," Dr Musgrave says.

"This is an important finding because it could mean that the toxicity from the fibrils is dependent on the type of tissue they come in contact with," Dr Musgrave says.

"We now have a better understanding of the role of these protein enhancers in HIV infection. However, it's clear that much more research is needed in this area," he says.

Explore further: Scientists identify human proteins that may fuel HIV/AIDS transmission

More information: Abigail K. Elias, Denis Scanlon, Ian F. Musgrave, John A. Carver, "SEVI, the semen enhancer of HIV infection along with fragments from its central region, form amyloid fibrils that are toxic to neuronal cells," Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Volume 1844, Issue 9, September 2014, Pages 1591-1598, ISSN 1570-9639, dx.doi.org/10.1016/j.bbapap.2014.06.006

Related Stories

Scientists identify human proteins that may fuel HIV/AIDS transmission

December 14, 2011
Scientists at the Gladstone Institutes have discovered new protein fragments in semen that enhance the ability of HIV, the virus that causes AIDS, to infect new cells -- a discovery that one day could help curb the global ...

Scientists use stem cells to create HIV resistance

June 10, 2014
(Medical Xpress)—Yuet Wai Kan of the University of California, San Francisco and colleagues have created HIV-resistant white blood cells by editing the genomes of induced pluripotent stem cells. The researchers inserted ...

Scientists uncover features of antibody-producing cells in people infected with HIV

June 3, 2014
By analyzing the blood of almost 100 treated and untreated HIV-infected volunteers, a team of scientists has identified previously unknown characteristics of B cells in the context of HIV infection. B cells are the immune ...

New target to fight HIV infection identified

October 1, 2013
A mutant of an immune cell protein called ADAP (adhesion and degranulation-promoting adaptor protein) is able to block infection by HIV-1 (human immunodeficiency virus 1), new University of Cambridge research reveals. The ...

Recommended for you

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.