Making a mental match: Pairing a mechanical device with stroke patients (w/ Video)

July 16, 2014
A pneumatic actuator tendon hammer hits a person's wrist while a transcranial magnetic stimulator creates a weak signal in the brain's motor cortex. The responses overlap in the brain, produce and send a strong signal back to the arm, and the wrist moves. Credit: Georgia Tech

The repetitive facilitation exercise (RFE) is one of the most common rehabilitation tactics for stroke patients attempting to regain wrist movement. Stroke hemiparesis individuals are not able to move that part of their body because they cannot create a strong enough neural signal that travels from the brain to the wrist.

With RFE, however, patients get a mental boost. They are asked to think about moving. At the same time, a practitioner flexes the wrist. The goal is to send a long latency response from the stretch that arrives in the brain at the exact time the thought happens, creating a . The result is a strong, combined response that zips back to the forearm muscles and moves the wrist.

It all happens in a span of approximately 40 to 60 milliseconds.

"Timing is everything. When the window is that small, it's not easy for two people to match each other," said Georgia Institute of Technology master's graduate Lauren Lacey.

That's why Lacey and a team of fellow Georgia Tech researchers created mechanical device that takes people out of the process, replacing them with accurate computers. Their functional MRI-compatible hemiparesis rehab device creates a long latency stretch reflex at the exact time as a .

"It's kind of like trying to fill a bucket with water," explained Minoru Shinohara, an associate professor in Georgia Tech's Human Neuromuscular Physiology Lab. "Stroke individuals can only mentally fill it halfway. The machine pours in the rest to make it full."

Making a mental match: Pairing a mechanical device with stroke patients
The Georgia Tech device tabs a person's wrist while a transcranial magnetic stimulator creates a signal in the brain. Credit: Georgia Tech

So far, the research team has worked only with healthy individuals in their study. Study participants lie on a bed with the arm extended beneath a pneumatic actuator tendon hammer. In order to simulate the weak signal created by hemiparesis individuals to move their wrist, a transcranial magnetic stimulator (TMS) is placed on the heads of these healthy individuals at a 45-degree angle. Milliseconds after the hammer taps the wrist's tendon, the TMS creates a weak signal in the motor cortex. The responses overlap, produce and send a strong signal back to the arm, and the moves.

The team has successfully varied the timing of the TMS signal and speed of the hammer to strike faster or slower depending on how much of a boost is needed to complement the brain signal. Now that the researchers have proven the viability of the TMS-actuator system, they will next work with stroke individuals.

"The device is designed to adapt to people whether they are hyper, normo or hyporeflexive," said Lacey, who graduated in spring with a master's degree from the George Woodruff School of Mechanical Engineering.

The video will load shortly

Also, because the machine is MRI-compatible, it will allow the team to study what is happening in the brain during rehab, opening the door for robotics.

"Once we fully understand what is happening mentally and physiologically, we should be able to create a robot that can reproduce successful rehabilitative exercises such as RFE," said Jun Ueda, an associate professor in the School of Mechanical Engineering. "It appears that the timing is the critical piece of this exercise. Robots are great at timing, so the results are very promising for robotics."

Explore further: Research finds rapid brain 'remapping' in patients years after stroke

Related Stories

Research finds rapid brain 'remapping' in patients years after stroke

March 7, 2014
(Medical Xpress)—By examining the sense of touch in stroke patients, a University of Delaware cognitive psychologist has found evidence that the brains of these individuals may be highly plastic even years after being damaged.

Watching individual neurons respond to magnetic therapy

June 29, 2014
Engineers and neuroscientists at Duke University have developed a method to measure the response of an individual neuron to transcranial magnetic stimulation (TMS) of the brain. The advance will help researchers understand ...

New research on stroke aims to help recovery

June 20, 2014
Stroke is the leading cause of adult disability worldwide but new funding of $1.2 million for research at the University of Auckland aims to better help people recover normal movement after stroke.

New MRI technique illuminates the wrist in motion

January 2, 2014
If a picture is worth 1,000 words then a movie is worth far more, especially when it comes to diagnosing wrist problems.

Researchers restore grasp ability in paralyzed hand

May 20, 2014
(Medical Xpress)—For the first time scientists have been able to restore the ability to grasp with a paralysed hand using spinal cord stimulation.

Recommended for you

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.