Molecular basis of age-related memory loss explained

July 22, 2014
As we are getting older, our ability to learn and remember new things declines. Credit: Fotolia

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information. However, as we are getting older, our ability to learn and remember new things declines. A team of scientists around Associate Prof Dr Antonio Del Sol Mesa from the Luxembourg Centre for Systems Biomedicine of the University of Luxembourg and Dr Ronald van Kesteren of the VU University Amsterdam have identified the molecular mechanisms of this cognitive decline using latest high-throughput proteomics and statistical methods.

The results were published this week in the prestigious scientific journal Molecular and Cellular Proteomics.

Brain cells undergo chemical and structural changes, when information is written into our memory or recalled afterwards. Particularly, the number and the strength of connections between nerve cells, the so-called synapses, changes. To investigate why learning becomes more difficult even during healthy ageing, the scientists looked at the molecular composition of brain connections in healthy mice of 20 to 100 weeks of age. This corresponds to a period from puberty until retirement in humans. "Amazingly, there was only one group of four proteins of the so-called extracellular matrix which increased strongly with age. The rest stayed more or less the same," says Prof Dr Antonio del Sol Mesa from the Luxembourg Centre for Systems Biomedicine.

The extracellular matrix is a mesh right at the connections between brain cells. A healthy amount of these proteins ensures a balance between stability and flexibility of synapses and is vital for learning and memory. "An increase of these proteins with age makes the connections between more rigid which lowers their ability to adapt to new situations. Learning gets difficult, memory slows down," Dr Ronald van Kesteren of the VU University Amsterdam elaborates.

In addition, the researchers not only looked at the individual molecules but also analysed the whole picture using a systems biology approach. Here they described the interplay between molecules as networks that together tightly control the amount of individual molecules and their interactions. "A healthy network keeps all molecules in the right level for proper functioning. In older mice we found, however, that the overall molecular composition is more variable compared to younger animals. This shows that the network is losing its control and can be more easily disturbed when we age," Prof Dr Antonio del Sol Mesa explains. According to the researchers this makes the brain more susceptible to diseases.

Hence, this insight into the normal aging process could also help in the future to better understand complex neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Chemical compounds that modulate the might be promising new treatments for learning disorders and memory loss.

Explore further: How the brain stabilizes its connections in order to learn better

More information: Vegh MJ, Rausell A, Loos M, Heldring CM, Jurkowski W, van Nierop P, Paliukovich I, Li KW, Del Sol A, Smit AB, Spijker S, van Kesteren RE. "Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline." Mol Cell Proteomics. 2014 Jul 20. DOI: 10.1074/mcp.M113.032086

Related Stories

How the brain stabilizes its connections in order to learn better

July 17, 2014
Throughout our lives, our brains adapt to what we learn and memorise. The brain is indeed made up of complex networks of neurons and synapses that are constantly re-configured. However, in order for learning to leave a trace, ...

Cellular environment controls formation and activity of neuronal connections

May 6, 2013
Environment moulds behaviour - and not just that of people in society, but also at the microscopic level. This is because, for their function, neurons are dependent on the cell environment, the so-termed extracellular matrix. ...

Scientists find new clues to brain's wiring

July 18, 2014
New research provides an intriguing glimpse into the processes that establish connections between nerve cells in the brain. These connections, or synapses, allow nerve cells to transmit and process information involved in ...

'Sticky synapses' can impair new memories by holding on to old ones

May 26, 2014
(Medical Xpress)—A team of UBC neuroscientists has found that synapses that are too strong or 'sticky' can actually hinder our capacity to learn new things.

Forgetting is actively regulated

March 13, 2014
In order to function properly, the human brain requires the ability not only to store but also to forget: Through memory loss, unnecessary information is deleted and the nervous system retains its plasticity. A disruption ...

Brain inflammation likely key initiator to prion and Parkinson's disease

November 29, 2012
In a recent publication, researchers of the Computational Biology group at the Luxembourg Centre for Systems Biomedicine showed that neuro-inflammation plays a crucial role in initiating prion disease.

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.