Study reveals protective role for specialized cells in intestinal and respiratory systems

July 7, 2014
David Lo (in lab coat) is a distinguished professor in the UC Riverside medical school's Division of Biomedical Sciences. He is seen here with a student. Credit: L. Duka.

Ripping a page from the Star Trek script, specialized cells of the barrier that lines the inside of the intestines and airways of humans have invoked a biological version of Captain Kirk's famous command "shields up" as a first defense against invading microbes.

Research in the UCR School of Medicine laboratory of David Lo found that certain of the epithelium have a potentially important role in – creating an electrostatic repulsion field to microbial invasion.

The study is featured on the cover of the July issue of Infection and Immunity, a journal published by the American Society for Microbiology. Co-authors of the study are Kaila M. Bennett, one of Lo's graduate students, and Sharon L. Walker, a UCR professor of chemical and environmental engineering.

The finding improves scientists' understanding of the densely packed protrusions – resembling a carpet – on the surface of some cells that line the insides of the intestines and respiratory system. The protrusions, which biologists call microvilli, increase the surface area of cells and have a role in absorbing nutrients, for instance.

But Lo's laboratory has found that the microvilli actually repel negatively charged bacteria and viruses, suggesting a protective "shield" akin to the force field that envelops the Enterprise in the plots of many "Star Trek" television episodes and movies.

"This is a whole new way of looking at immune surveillance in the epithelium of the human gut and airway," said Lo, a distinguished professor in the medical school's Division of Biomedical Sciences. "If we can take advantage of this electrostatic repulsion, it could improve the diagnosis and treatment of certain bacterial infections."

A number of bacterial and viral infections can gain a foothold in the human body through adsorption via the intestines and airways, such as Salmonella and the flu.

Lo's laboratory has for more than a dozen years studied immune responses in the gut and airways, focusing particularly on cells which function as an early warning in the . "We study the role of certain in the immune system. By understanding how the immune system is able to capture and carry viruses and bacteria across this barrier to trigger a protective immune, we may be able to design better synthetic vaccines, including needle-free vaccines," Lo said.

Lo joined UCR in 2006. In addition to his faculty position in the UCR School of Medicine Division of Biomedical Sciences, he is affiliated with the UCR Center for Disease Vector Research and the UC Global Health Institute. He is a fellow of the American Association for the Advancement of Sciences (2007) and a 2005 recipient of a "Grand Challenges in Global Health" award, Bill and Melinda Gates Foundation and the Foundation for the National Institutes of Health.

Explore further: Research study takes deeper look at the role of gut microbes in the immune system

Related Stories

Research study takes deeper look at the role of gut microbes in the immune system

March 25, 2014
New research suggests that gut microorganisms do not merely influence immune cell function, but also support the production of immune cells that form the first line of defense against infection. By understanding the mechanisms ...

Mechanism that prevents lethal bacteria from causing invasive disease revealed

July 7, 2014
An important development in understanding how the bacterium that causes pneumonia, meningitis and septicaemia remains harmlessly in the nose and throat has been discovered at the University of Liverpool's Institute of Infection ...

Powerful bacterial immune response defined by new study

February 6, 2014
T-cells, the elite guard of the immune system in humans and other mammals, ignore normal biologic protocol and swing into high gear when attacked by certain fast-moving bacteria, reports a team of researchers led by a UC ...

PDL-1 antibody could help immune system fight off influenza viral infection, study suggests

December 23, 2013
An antibody that blocks a component of a key signaling pathway in the respiratory airways could help the immune system rid the body of the influenza virus, a new study suggests. The findings, from a team at The Research Institute ...

Study uncovers new explanation for infection susceptibility in newborns

November 6, 2013
Cells that allow helpful bacteria to safely colonize the intestines of newborn infants also suppress their immune systems to make them more vulnerable to infections, according to new research in Nature.

Recommended for you

Study suggests same gut bacteria can trigger different immune responses depending on environment

July 24, 2017
(Medical Xpress)—A group of researchers affiliated with several institutions in the U.S. has found that one type of gut bacteria triggers different kinds of immune responses depending on the state of the environment they ...

Genetic immune deficiency could hold key to severe childhood infections

July 18, 2017
A gene mutation making young children extremely vulnerable to common viruses may represent a new type of immunodeficiency, according to a University of Queensland researcher.

What are the best ways to diagnose and manage asthma?

July 18, 2017
What are the best ways to diagnose and manage asthma in adults? This can be tricky because asthma can stem from several causes and treatment often depends on what is triggering the asthma.

Large multi-ethnic study identifies many new genetic markers for lupus

July 17, 2017
Scientists from an international consortium have identified a large number of new genetic markers that predispose individuals to lupus.

Study finds molecular explanation for struggles of obese asthmatics

July 17, 2017
A large, bouquet-shaped molecule called surfactant protein A, or SP-A, may explain why obese asthma patients have harder-to-treat symptoms than their lean and overweight counterparts, according to a new study led by scientists ...

Team identifies potential cause for lupus

July 14, 2017
Leading rheumatologist and Feinstein Institute for Medical Research Professor Betty Diamond, MD, may have identified a protein as a cause for the adverse reaction of the immune system in patients suffering from lupus. A better ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.