Tuberculosis protein helps spot breast cancer's signals

July 1, 2014, Institute of Cancer Research

(Medical Xpress)—Scientists have used a protein from Mycobacterium tuberculosis – the bacterium that causes most cases of tuberculosis – to unravel the signals produced by cancer from those of healthy cells.

A team at The Institute of Cancer Research, London, used the M. tuberculosis protein to help untangle the complex communication network between breast cancer cells and their healthy neighbours – and begin to describe breast cancer's communication signature.

The research, funded by the Wellcome Trust and Cancer Research UK, used the bacterial protein as part of a new method to mark up the signals produced by cancer cells and healthy cells differently, so that they could be told apart.

Understanding the origin of different cell signals will illuminate the processes involved in driving cancer and could lead to new forms of treatment.

Breast cancer cells communicate with each other, and with neighbouring cells from the healthy breast, through a hugely complex network of interactions that helps drive the tumour's growth and ensure it is nourished as it develops. Up to now, it has not been possible to easily tell apart the signals sent out by different cell types.

But the new method, described in the journal Molecular and Cellular Proteomics, was able to separate out signals from breast cancer cells from those of a type of healthy cell called fibroblasts, and could be applied to a wide range of different cancers.

Researchers took advantage of a quirk in the natural production of lysine, one of the 22 amino acid building blocks that make up all the proteins in the human body.

The final form of lysine is made by two different enzymes – diaminopimelate decarboxylase (DDC) and lysine racemase – each of which works on a different precursor molecule.

Scientists grew breast cancer cells containing DDC taken from M. tuberculosis for 10 days in a petri dish – causing the cells to produce 90 per cent of their lysine from one particular of the two precursors (called meso-2,6-Diaminopimelate).

Conversely, healthy human cells grown in a medium containing lysine racemase – produced by another bacterium called Proteus mirabilis – produced 90 per cent of their lysine from the second precursor, D-lysine.

Scientists grew both cell types in a medium containing 'heavy' D-lysine so proteins making use of this precursor could be told apart from those using the other – separating out signals produced by and those produced by breast cancer. The heavier lysine could be distinguished from lighter lysine using a technique called mass spectrometry.

Study leader Dr Chris Tape, Sir Henry Wellcome Postdoctoral Fellow at The Institute of Cancer Research, London, said:

"Cancer cells send out signals to other cells in their surroundings, and the effects produced by these signals play an important role in a tumour's development. The signals released by and their healthy neighbours form an extremely complex communication network, and we need new ways of unpicking the cellular origins of the various signals so we can better understand what is happening.

"Our new method can discriminate between the signals produced from and their healthy neighbours, and is allowing us to begin to describe 's distinctive communication signature. Understanding how cancer signals to its surroundings could have a wide range of applications in the future, including in identifying potential targets for new treatments."

Nell Barrie, science information manager at Cancer Research UK, said:

"Cancer cells are constantly communicating and this technique offers an ingenious new way to listen in on their signals. Taking inspiration from tuberculosis research also highlights the power of collaboration across different fields in science – Cancer Research UK is investing in this collective approach to science through our involvement in the Francis Crick Institute, which will bring together scientists from many areas of health research when it opens in London in 2015."

Explore further: Signalling protein plays different roles in breast cancer and normal cells

Related Stories

Signalling protein plays different roles in breast cancer and normal cells

June 20, 2014
A key step in developing effective cancer therapies is identifying differences between normal, healthy cells and cancer cells – these differences can then be exploited to specifically kill tumour cells.

Leukaemia gene provides clue to treating triple negative breast cancer

June 27, 2014
(Medical Xpress)—Cancer Research UK scientists have discovered that a gene previously linked to leukaemia could provide an urgently needed target for the development of drugs to treat patients with 'triple negative' breast ...

Signals found that recruit host animals' cells, enabling breast cancer metastasis

May 22, 2014
Working with mice, Johns Hopkins researchers report they have identified chemical signals that certain breast cancers use to recruit two types of normal cells needed for the cancers' spread. A description of the findings ...

Virus kills triple negative breast cancer cells, tumor cells in mice

June 24, 2014
A virus not known to cause disease kills triple-negative breast cancer cells and killed tumors grown from these cells in mice, according to Penn State College of Medicine researchers. Understanding how the virus kills cancer ...

Immune cells found near tumours boost breast cancer survival

June 10, 2014
Women with breast cancer are 10 per cent more likely to survive for five years or more if they have certain immune cells near their tumour, according to research published in Annals of Oncology today.

Stopping the spread of breast cancer

June 3, 2014
The primary cause of death from breast cancer is the spread of tumor cells from the breast to other organs in the body. Northwestern Medicine® scientists have discovered a new pathway that can stop breast cancer cells from ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.