Predicting the storm: Can computer models improve stem cell transplantation?

December 4, 2014, Virginia Commonwealth University

Is the human immune system similar to the weather, a seemingly random yet dynamical system that can be modeled based on past conditions to predict future states? Scientists at VCU Massey Cancer Center's award-winning Bone Marrow Transplant (BMT) Program believe it is, and they recently published several studies that support the possibility of using next-generation DNA sequencing and mathematical modeling to not only understand the variability observed in clinical outcomes of stem cell transplantation, but also to provide a theoretical framework to make transplantation a possibility for more patients who do not have a related donor.

Despite efforts to match patients with genetically similar donors, it is still nearly impossible to predict whether a stem cell recipient will develop potentially fatal graft-versus-host disease (GVHD), a condition where the donor's attacks the recipient's body. Two studies recently published by the online journal Frontiers in Immunology explored data obtained from the whole exome sequencing of nine donor-recipient pairs (DRPs) and found that it could be possible to predict which patients are at greatest risk for developing GVHD and, therefore, in the future tailor immune suppression therapies to possibly improve . The data provides evidence that the way a patient's immune system rebuilds itself following is representative of a dynamical system, a system in which the current state determines what future state will follow.

"The immune system seems chaotic, but that is because there are so many variables involved," says Amir Toor, M.D., member of the Developmental Therapeutics research program at Massey and associate professor in the Division of Hematology, Oncology and Palliative Care at the VCU School of Medicine. "We have found evidence of an underlying order. Using next-generation DNA sequencing technology, it may be possible to account for many of the molecular variables that eventually determine how well a donor's immune system will graft to a patient."

Toor's first study revealed a large and previously unmeasured potential for developing GVHD for which the conventional approach used for matching DRPs does not account. The conventional approach for donor-recipient compatibility determination uses human leucocyte antigen (HLA) testing. HLA refers to the genes that encode for proteins on the surface of cells that are responsible for regulating the immune system. HLA testing seeks to match DRPs who have similar HLA makeup.

Specifically, Toor and his colleagues used whole to examine variation in minor histocompatibility antigens (mHA) of transplant DRPs. These mHA are protein fragments presented on the HLA molecules, which are the receptors on cells' surface to which these fragments of degraded proteins from within a cell bind in order to promote an immune response. Using advanced computer-based analysis, the researchers examined potential interactions between the mHA and HLA and discovered a high level of mHA variation in HLA-matched DRPs that could potentially contribute to GVHD. These findings may help explain why many HLA-matched recipients experience GVHD, but why some HLA-mismatched recipients experience none remains a mystery. This seeming paradox is explained in a companion paper, also published in the journal Frontiers in Immunology. In this manuscript, the team suggests that by inhibiting peptide generation through immunosuppressive therapies in the earliest weeks following stem cell transplantation, antigen presentation to donor T cells could be diminished, which reduces the risk of GVHD as the recipients reconstitute their T-cell repertoire.

Following stem cell transplantation, a patient begins the process of rebuilding their T-cell repertoire. T cells are a family of immune system cells that keep the body healthy by identifying and launching attacks against pathogens such as bacteria, viruses or cancer. T cells have small receptors that recognize antigens. As they encounter foreign antigens, they create thousands of clones that can later be called upon to guard against the specific pathogen that presented the antigen. Over the course of a person's life, they will develop millions of these clonal families, which make up their T-cell repertoire and protect them against the many threats that exist in the environment.

This critical period where the patient rebuilds their immune system was the focus of the researchers' efforts. In previous research, Toor and his colleagues discovered a fractal pattern in the DNA of recipients' T-cell repertoires. Fractals are self-similar patterns that repeat themselves at every scale. Based on their data, the researchers believe that the presentation of minor histocompatability antigens following transplantation helps shape the development of T-cell clonal families. Thus, inhibiting this antigen presentation through immunosuppressive therapies in patients who have high mHA variation can potentially reduce the risk of GVHD by influencing the development of their T-cell repertoire. This is backed by data from clinical studies that show immune suppression soon after transplantation improves outcomes in unrelated DRPs.

The researchers suggest that an equation such as the logistic model of growth, a mathematical formula used to explain population growth, could be employed to predict the evolution of T-cell clones and determine a patient's future risk of GVHD.

"Currently, we rely on population-based outcomes derived from probabilistic studies to determine the best way to perform stem cell transplants. The development of accurate mathematical models that account for the key variables influencing transplant outcomes may allow us to treat patients using a systematic and personalized approach," says Toor. "We plan to keep exploring this concept in hopes that we can tailor the transplantation process to each individual in order to improve outcomes and make transplantation an option for more patients."

Explore further: Antibodies from rabbits improve survival and relapse outcomes of leukemia and myelodysplasia

More information: The full manuscripts of these studies are available at: journal.frontiersin.org/Journa … .2014.00529/abstract and journal.frontiersin.org/Journa … .2014.00613/abstract

Related Stories

Antibodies from rabbits improve survival and relapse outcomes of leukemia and myelodysplasia

July 6, 2012
Researchers at Virginia Commonwealth University (VCU) Massey Cancer Center's Bone Marrow Transplant Program have demonstrated that the use of antibodies derived from rabbits can improve the survival and relapse outcomes of ...

Researchers look to mathematics, nature, to understand the immune system and its role in cancer

May 1, 2013
Can the patterns in tree branches or the meandering bends in a river provide clues that could lead to better cancer therapies? According to a new study from Virginia Commonwealth University Massey Cancer Center, these self-similar, ...

B and T cell-targeting drug ameliorates chronic graft-versus-host disease in mice

October 1, 2014
Hematopoietic stem cells (HSCs) can differentiate into all types of blood cells, including red blood cells and immune cells. While HSC transplantation can be life saving for patients with aggressive forms of blood cancer ...

Study examines vitiligo, alopecia areata and chronic graft vs. host disease

September 10, 2014
Vitiligo (depigmentation of the skin) and alopecia areata (AA, patchy or complete hair loss) in patients with chronic graft-vs-host disease (GvHD) following a stem cell transplant appear to be associated with having a female ...

Unexpected variation in immune genes poses difficulties for transplantation

August 3, 2012
the genes that allow our immune system to tell the difference between our own cells and foreign invaders – are evolving much more rapidly than previously thought, according to an article online on August 3 in Trends ...

New genetic clues to why most bone marrow transplant patients develop graft-versus-host disease

September 4, 2012
A team of scientists led by a bone marrow transplant researcher at Fred Hutchinson Cancer Research Center has shed new light on why most bone marrow transplant patients who receive tissue-matched cells from unrelated donors ...

Recommended for you

Human immune 'trigger' map paves way for better treatments

June 21, 2018
A discovery about how human cells are 'triggered' to undergo an inflammatory type of cell death could have implications for treating cancer, stroke and tissue injury, and immune disorders.

Fetal T cells are first responders to infection in adults

June 20, 2018
Cornell University researchers have discovered there is a division of labor among immune cells that fight invading pathogens in the body.

How a thieving transcription factor dominates the genome

June 20, 2018
One powerful DNA-binding protein, the transcription factor PU.1, steals away other transcription factors and recruits them for its own purposes, effectively dominating gene regulation in developing immune cells, according ...

Severe stress may send immune system into overdrive

June 19, 2018
(HealthDay)—Trauma or intense stress may up your odds of developing an autoimmune disease, a new study suggests.

Composition of complex sugars in breast milk may prevent future food allergies

June 12, 2018
The unique composition of a mother's breastmilk may help to reduce food sensitization in her infant, report researchers at the University of California San Diego School of Medicine with colleagues in Canada.

Drug may quell deadly immune response when trauma spills the contents of our cells' powerhouses

June 11, 2018
When trauma spills the contents of our cell powerhouses, it can evoke a potentially deadly immune response much like a severe bacterial infection.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.