Chance and circumstance tip immune control of cancer

April 23, 2015 by Amanda Morris, Northwestern University
How does one's immune system 'decide' whether or not to attack a tumor (represented above by the dark blue cells), especially when each individual immune cell may adopt a state that either suppresses (red cells) or promotes (green cells) tumor growth? Joshua Leonard's team is working to understand the roles of chance and collective decision making in this aspect of cancer, toward the goal of therapeutically biasing immune 'decisions' to improve cancer treatment. Credit: Danny Wells

You think that your immune system is there to protect you. But what happens when it starts working against you?

In the earliest stages of cancer formation, the is forced to make a momentous decision. It either activates and suppresses growth to help the body fight disease, or it becomes dysfunctional, helping the tumor grow and making treatment more difficult. Because this tipping point occurs before a person even realizes something is wrong, doctors are unable to directly observe this critical stage.

"We believe that when enter a tumor site, they essentially flip a coin, and thus any one immune cell can go one way or the other," said Joshua Leonard, assistant professor of chemical and biological engineering in Northwestern University's McCormick School of Engineering. "What we didn't know is how this element of chance impacts whether the tumor survives or is instead controlled by ."

Led by Leonard and his graduate student Danny Wells, an interdisciplinary team of researchers has created a computational model that enables one to examine how emerging metastatic tumors interact with the immune system. A better understanding of this sensitive early stage could potentially inform new strategies to overcome , leading to better outcomes.

So far, the model has helped explain something that doctors have observed in the clinic: spatial disorganization within a tumor is a bad sign. Leonard and his collaborators found that greater disorganization within tumors can promote immunosuppression and .

"We know there was correlation between disorganization and poor prognosis, but the reason behind this connection wasn't clear," Leonard said. "This study helps explain how heterogeneity might give rise to an environment that tips the immune system toward a tumor-promoting state."

The research is described online in the April 23 issue of PLOS Computational Biology. Other authors on the paper include William L. Kath, professor of engineering sciences and applied mathematics, former McCormick professor Dirk Brockmann, former graduate student Yishan Chuang, and former undergraduate researcher Louis Knapp. Wells is first author of the paper. The interdisciplinary team came together through interaction supported by Northwestern's Physical Sciences-Oncology Center, a flagship program of the Chemistry of Life Processes Institute.

The team also used the model as a virtual test bed to evaluate potential strategies for engineering cell-based therapies to overcome tumor-associated immune dysfunction. Leonard said that researchers could introduce biological therapies to shift the system away from becoming immunosuppressive, and their investigation suggestions some relatively straightforward strategies that could be effective.

"Our ability to engineer customized biological therapies using technologies like synthetic biology is rapidly expanding," Leonard said. "Computational tools like this one will play a key role in helping us design and build therapies that are both safe and effective."

Explore further: 'Humanized' mice will lead to better testing of cancer immunotherapies

More information: PLOS Computational Biology, journals.plos.org/ploscompbiol … journal.pcbi.1004181

Related Stories

'Humanized' mice will lead to better testing of cancer immunotherapies

April 23, 2015
Human tumors grown in mouse models have long been used to test promising anti-cancer therapies. However, when a human tumor is transplanted into a mouse, the mouse immune system must be knocked down so that it doesn't attack ...

Building 'smart' cell-based therapies

April 17, 2014
A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other sites of disease.

Stimulating both major branches of the immune system halts tumor growth more effectively

April 14, 2015
The human immune system is poised to spring into action at the first sign of a foreign invader, but it often fails to eliminate tumors that arise from the body's own cells. Cancer biologists hope to harness that untapped ...

Noninvasive imaging of immune system detects tumors, could monitor therapeutic response

April 20, 2015
A novel approach that allows real-time imaging of the immune system's response to the presence of tumors—without the need for blood draws or invasive biopsies—offers a potential breakthrough both in diagnostics and in ...

Study points to potential new lung cancer therapy

April 20, 2015
New findings about regulation of PD-L1, a protein that allows cancer to evade the immune system, has shown therapeutic promise for several cancers, including the most common form of lung cancer.

Recommended for you

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

3-D mammography detected 34% more breast cancers in screening

October 15, 2018
In traditional mammography screening, all breast tissue is captured in a single image. Breast tomosynthesis, on the other hand, is three-dimensional and works according to the same principle as what is known as tomography. ...

More clues revealed in link between normal breast changes and invasive breast cancer

October 15, 2018
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process—changes in mammary glands to accommodate breastfeeding—uses a molecular process believed ...

Cancer stem cells use 'normal' genes in abnormal ways

October 12, 2018
CDK1 is a "normal" protein—its presence drives cells through the cycle of replication. And MHC Class I molecules are "normal" as well—they present bits of proteins on the surfaces of cells for examination by the immune ...

Obesity linked to increased risk of early-onset colorectal cancer

October 12, 2018
Women who are overweight or obese have up to twice the risk of developing colorectal cancer before age 50 as women who have what is considered a normal body mass index (BMI), according to new research led by Washington University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.