Researchers discover mechanism leading to BRAF inhibitor resistance in melanoma

June 19, 2015, H. Lee Moffitt Cancer Center & Research Institute
Melanoma in skin biopsy with H&E stain — this case may represent superficial spreading melanoma. Credit: Wikipedia/CC BY-SA 3.0

The development of targeted therapies has significantly improved the survival of melanoma patients over the last decade; however, patients often relapse because many therapies do not kill all of the tumor cells, and the remaining cells adapt to treatment and become resistant. Moffitt Cancer Center researchers have discovered a novel mechanism that can lead melanoma cells to develop resistance to drugs that target the protein BRAF.

Mutations in the gene BRAF are the most common mutation found in melanoma, with up to 50 percent of tumors testing positive for the mutations. Several agents that directly target BRAF have been approved by the Food and Drug Administration for the treatment of melanoma patients who have the mutation, including dabrafenib and vemurafenib. However, many patients become resistant to BRAF inhibitors and relapse. This resistance is associated with reactivation of the BRAF protein communication pathway in .

Another gene that is frequently mutated in melanoma is PTEN. Studies have shown that melanoma patients who have both BRAF and PTEN mutations may have a poorer response to dabrafenib and vemurafenib therapy.

Moffitt researchers wanted to determine the mechanism responsible for resistance to BRAF inhibitors. They discovered that BRAF inhibitors cause BRAF and PTEN mutant to increase levels of fibronectin. Fibronectin is a protein that is expressed in the space surrounding cells. The researchers found that higher levels of fibronectin allow melanoma cells to form their own protective environment that reduces the ability of BRAF inhibitors to kill tumor cells.

Importantly, the researchers discovered that melanoma patients who have PTEN mutations and of fibronectin in their tumors tend to have a lower overall survival. They also showed that targeting the tumor with BRAF inhibitors combined with a drug that targets the protective environment significantly enhances the killing effect of the BRAF inhibitor.

"This study gives important new insights into why nearly all melanoma patients fail targeted therapy," explained Keiran S. Smalley, Ph.D., associate member of the Tumor Biology Program at Moffitt.

The researchers believe that effective cancer therapy in the future will require the combined action of drugs that target both the and its adaptive responses to initial therapies. This is particularly important for melanoma patients because the survival of only a single cell after initial cancer therapy is enough to allow a to regrow. According to Inna Fedorenko, Ph.D., post-doctoral fellow at Moffitt, "targeting the protective environment is one way of delivering more durable therapeutic responses to our patients."

The study was published June 15 online ahead of print in the journal Oncogene

Explore further: Researchers identify a new target for treating drug-resistant melanoma

More information: Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells, Oncogene advance online publication 15 June 2015; DOI: 10.1038/onc.2015.188

Related Stories

Researchers identify a new target for treating drug-resistant melanoma

May 28, 2015
A new collaborative study led by researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham), published today in Cell Reports, provides new insight into the molecular changes that lead to resistance to a commonly ...

New insight into drug resistance in metastatic melanoma

June 3, 2014
(Medical Xpress)—A study by scientists in Manchester has shown how melanoma drugs can cause the cancer to progress once a patient has stopped responding to treatment.

Scientist study skin cancer patients resistant to leading therapy

February 24, 2015
Powerful drugs known as BRAF-inhibitors have been crucial for melanoma patients, saving lives through their ability to turn off the BRAF protein's power to spur cancer cell growth.

Enhanced treatment, surveillance needed for certain melanoma patients to prevent secondary cancers

August 14, 2013
Moffitt Cancer Center researchers suggest secondary cancers seen in melanoma patients who are being treated for a BRAF gene mutation may require new strategies, such as enhanced surveillance and combining BRAF-inhibitor therapy ...

Macrophages may play critical role in melanoma resistance to BRAF inhibitors

March 17, 2015
In the last several years, targeted therapies - drugs that directly impact specific genes and proteins involved in the progression of cancer - have been approved for a wide variety of cancers, including melanoma, the deadliest ...

New biomarker may help guide treatment of melanoma patients

October 22, 2013
A functional biomarker that can predict whether BRAF-mutant melanomas respond to drugs targeting BRAF could help guide the treatment of patients with these cancers, according to results presented here at the AACR-NCI-EORTC ...

Recommended for you

Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant

June 21, 2018
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.

Existing treatment could be used for common 'untreatable' form of lung cancer

June 21, 2018
A cancer treatment already approved for use in certain types of cancer has been found to block cell growth in a common form of lung cancer for which there is currently no specific treatment available.

Novel therapy makes oxidative stress deadly to cancer

June 21, 2018
Oxidative stress can help tumors thrive, but one way novel cancer treatments work is by pushing levels to the point where it instead helps them die, scientists report.

Researchers uncover new target to stop cancer growth

June 21, 2018
Researchers at the University of Wisconsin-Madison have discovered that a protein called Munc13-4 helps cancer cells secrete large numbers of exosomes—tiny, membrane-bound packages containing proteins and RNAs that stimulate ...

New treatment helps avoid deafness in child chemotherapy patients

June 21, 2018
An international trial has found that a medicine commonly used to treat poisoning is effective in reducing deafness in children receiving chemotherapy for cancer.

New therapeutic opportunity for the treatment of resistant malignant melanoma

June 21, 2018
A team of researchers led by Dr. Pierre Close, WELBIO researcher at the ULiège GIGA Institute and Dr. Francesca Rapino has uncovered a new therapeutic opportunity in the treatment of malignant melanoma that has acquired ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.