Speech recognition from brain activity

June 16, 2015, Karlsruhe Institute of Technology
Speech recognition from brain activity
Brain activity recorded by electrocorticography (blue circles). From the activity patterns (blue/yellow), spoken words can be recognized. Credit: CSL/KIT

Speech is produced in the human cerebral cortex. Brain waves associated with speech processes can be directly recorded with electrodes located on the surface of the cortex. It has now been shown for the first time that is possible to reconstruct basic units, words, and complete sentences of continuous speech from these brain waves and to generate the corresponding text. Researchers at KIT and Wadsworth Center, USA present their "Brain-to-Text" system in the scientific journal Frontiers in Neuroscience.

"It has long been speculated whether humans may communicate with machines via activity alone," says Tanja Schultz, who conducted the present study with her team at the Cognitive Systems Lab of KIT. "As a major step in this direction, our recent results indicate that both single units in terms of as well as continuously spoken sentences can be recognized from brain activity."

These results were obtained by an interdisciplinary collaboration of researchers of informatics, neuroscience, and medicine. In Karlsruhe, the methods for signal processing and have been developed and applied. "In addition to the decoding of from brain activity, our models allow for a detailed analysis of the brain areas involved in speech processes and their interaction," outline Christian Herff und Dominic Heger, who developed the Brain-to-Text system within their doctoral studies.

The present work is the first that decodes continuously spoken speech and transforms it into a textual representation. For this purpose, cortical information is combined with linguistic knowledge and machine learning algorithms to extract the most likely word sequence. Currently, Brain-to-Text is based on audible speech. However, the results are an important first step for recognizing speech from thought alone.

The was recorded in the USA from 7 epileptic patients, who participated voluntarily in the study during their clinical treatments. An electrode array was placed on the surface of the cerebral cortex (electrocorticography (ECoG)) for their neurological treatment. While patients read aloud sample texts, the ECoG signals were recorded with high resolution in time and space. Later on, the researchers in Karlsruhe analyzed the data to develop Brain-to-Text. In addition to basic science and a better understanding of the highly complex speech processes in the brain, Brain-to-Text might be a building block to develop a means of speech communication for locked-in patients in the future.

Explore further: Study: Speech processing requires both sides of our brain

More information: "Brain-to-text: decoding spoken phrases from phone representations in the brain." Front. Neurosci. 9:217. DOI: 10.3389/fnins.2015.00217

Related Stories

Study: Speech processing requires both sides of our brain

January 15, 2014
We use both sides of our brain for speech, a finding by researchers at New York University and NYU Langone Medical Center that alters previous conceptions about neurological activity. The results, which appear in the journal ...

Syllables that oscillate in neuronal circuits: What neuroscience can say about speech processing in the brain

June 10, 2015
Speech, emitted or received, produces an electrical activity in neurons that neuroscientists measure in the form of "cortical oscillations". To understand speech, as for other cognitive or sensory processes, the brain breaks ...

Researchers find brain area that integrates speech's rhythms

May 18, 2015
Duke and MIT scientists have discovered an area of the brain that is sensitive to the timing of speech, a crucial element of spoken language.

Brain's iconic seat of speech goes silent when we actually talk

February 17, 2015
For 150 years, the iconic Broca's area of the brain has been recognized as the command center for human speech, including vocalization. Now, scientists at UC Berkeley and Johns Hopkins University in Maryland are challenging ...

Finding thoughts in speech

June 23, 2014
For the first time, neuroscientists were able to find out how different thoughts are reflected in neuronal activity during natural conversations. Johanna Derix, Olga Iljina and the interdisciplinary team of Dr. Tonio Ball ...

Recommended for you

Scientists identify connection between dopamine and behavior related to pain and fear

April 19, 2018
Scientists at the University of Maryland School of Medicine have for the first time found direct causal links between the neurotransmitter dopamine and avoidance—behavior related to pain and fear.

Neurons derived from super-obese people respond differently to appetite hormones

April 19, 2018
US scientists have successfully generated hypothalamic-like neurons from human induced pluripotent stem cells (hiPSCs) taken from the blood and skin cells of super-obese individuals and people with a normal body weight. The ...

Pathways to spatial recognition

April 19, 2018
When you are lost or disoriented, your brain uses cues from your surroundings—landmarks both near and far—to sort out where you are. The information gathered by your senses is transmitted by nerve cells, or neurons, to ...

Researchers develop a new method to discover drugs to treat epilepsy

April 19, 2018
For more than a third of children living with epilepsy, the currently approved medications do not stop their seizures. This statistic has not changed for the past five decades, despite the development of many new anti-seizure ...

3-D human 'mini-brains' shed new light on genetic underpinnings of major mental illness

April 19, 2018
Major mental illnesses such as schizophrenia, severe depression and bipolar disorder share a common genetic link. Studies of specific families with a history of these types of illnesses have revealed that affected family ...

Study shows creativity is state of mind that can be trained

April 19, 2018
As an undergraduate student at York University, Joel Lopata was studying film production and jazz performance when a discrepancy became apparent.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.