A newly discovered molecular feedback process may protect the brain against Alzheimer's

August 18, 2015, Rockefeller University
A newly discovered molecular feedback process may protect the brain against Alzheimer’s
Within cells displaying features of Alzheimer’s, the researchers found high concentrations of WAVE1 and the amyloid-β precursor protein within the Golgi, an organelle in which proteins are packaged for shipping. These appear in the cell above as bright, yellow clusters.

It is a hallmark of Alzheimer's disease: Toxic protein fragments known as amyloid-β clumped together between neurons in a person's brain. Neurons themselves make amyloid-β, and for reasons that aren't fully understood, its accumulation ultimately contributes to the memory loss, personality changes, and other symptoms that patients with this degenerative disease often suffer from.

New research by Rockefeller University scientists and their colleagues have identified a series of naturally occurring molecular steps—known as a pathway—that can dampen the production of amyloid-β. These results, reported in Nature Medicine on August 17, suggest a new route in the search for Alzheimer's therapies.

"Our discovery centers on a protein called WAVE1, which we found to be important in the production of amyloid-β. The reduction of WAVE1 appears to have a against the disease," says study author Paul Greengard, Vincent Astor Professor and head of the Laboratory of Molecular and Cellular Neuroscience. "When levels of amyloid-β rise, there is an accompanying increase in another molecule, AICD, which reduces the expression of WAVE1. This has the effect of reducing the production of amyloid-β.

"By targeting steps within this newly discovered pathway," he adds, "it may be possible to develop drugs to reduce amyloid-β that potentially could be used to either treat or prevent Alzheimer's disease."

WAVE1 is known to help to build filaments of a protein called actin that serve as basic components of cellular structures. In the current study, the team, including first author Ilaria Ceglia, who conducted this work while a research associate in the lab, examined the levels of WAVE1 in mouse and cellular models of Alzheimer's disease and found that they were unusually low. Research done by a collaborator at Columbia University found this was also true for the brains of human patients with the disease.

To take a closer look at the relationship between amyloid-β and WAVE1, the researchers tested the brains and memories of mice genetically altered to produce high levels of amyloid-β and varying levels of WAVE1. They found a dose-dependent response: Mice brains with low WAVE1 levels produced less amyloid-β, and these animals performed better on memory tests.

Next, the researchers wanted to know how WAVE1 affects the production of amyloid-β. The precursor to this Alzheimer's protein is not harmful by itself, and does not normally yield brain-damaging products. However, sometimes the precursor is processed in such a way that it produces disease-promoting amyloid-β.

The team found high levels of both the and WAVE1 in a compartment within the cell known as the Golgi, which acts as a sort of shipping department. Here proteins are packaged before they are sent out to various destinations within the cell. In the case of the amyloid precursor protein, the first destination is the cell's outer membrane. From there, it travels into the compartments within the cell, where it is processed to produce amyloid-β.

Because the formation of structural filaments is critical to the process by which cargo buds off and leaves the Golgi, the researchers suspected a role for WAVE1. Their experiments showed an interaction between WAVE1 and the amyloid precursor protein, and confirmed that WAVE1 mediates the formation of cargo vesicles containing amyloid precursor protein.

"The result is a negative feedback loop," says corresponding author Yong Kim, a research assistant professor in the lab. "More amyloid-β means more AICD. Our experiments reveal that AICD travels into the nucleus where it reduces the expression of WAVE1. Less WAVE1 means less in cargo traveling to the membrane for conversion into amyloid-β. In Alzheimer's disease, this appears to lose its protective effect, and the next step for us is to figure out how."

Explore further: Discovery prompts rethink on metals and Alzheimer's disease

More information: "APP intracellular domain–WAVE1 pathway reduces amyloid-β production." Nature Medicine (2015) DOI: 10.1038/nm.3924

Related Stories

Discovery prompts rethink on metals and Alzheimer's disease

July 30, 2015
Researchers at the University of Melbourne have discovered that a protein involved in the progression of Alzheimer's disease also has properties that could be helpful for human health.

Alzheimer protein's structure may explain its toxicity

May 7, 2015
Researchers at the University of Illinois at Chicago have determined the molecular structure of one of the proteins in the fine fibers of the brain plaques that are a hallmark of Alzheimer's disease. This molecule, called ...

Brain's ability to dispose of key Alzheimer's protein drops dramatically with age

July 31, 2015
The greatest risk factor for Alzheimer's disease is advancing age. After 65, the risk doubles every five years, and 40 percent or more of people 85 and older are estimated to be living with the devastating condition.

Carmustine decreases amyloid beta plaques

March 25, 2013
Long term treatment by carmustine, a chemical relative of mustard gas and already used to treat some types of brain cancer, can decrease the amount of amyloid β and number of amyloid plaques in a mouse model of Alzheimer's ...

Novel approach blocks amyloid production in Alzheimer's mouse model

April 29, 2015
Offering a potential early intervention for Alzheimer's disease (AD), researchers at University of California, San Diego School of Medicine and Cenna Biosciences, Inc. have identified compounds that block the production of ...

Alzheimer amyloid clumps found in young adult brains

March 2, 2015
Amyloid—an abnormal protein whose accumulation in the brain is a hallmark of Alzheimer's disease—starts accumulating inside neurons of people as young as 20, a much younger age than scientists ever imagined, reports a ...

Recommended for you

Does diabetes damage brain health?

December 14, 2018
(HealthDay)—Diabetes has been tied to a number of complications such as kidney disease, but new research has found that older people with type 2 diabetes can also have more difficulties with thinking and memory.

Amyloid pathology transmission in lab mice and historic medical treatments

December 13, 2018
A UCL-led study has confirmed that some vials of a hormone used in discontinued medical treatments contained seeds of a protein implicated in Alzheimer's disease, and are able to seed amyloid pathology in mice.

Study links slowed brainwaves to early signs of dementia

December 13, 2018
To turn back the clock on Alzheimer's disease, many researchers are seeking ways to effectively diagnose the neurodegenerative disorder earlier.

New discoveries predict ability to forecast dementia from single molecule

December 11, 2018
Scientists who recently identified the molecular start of Alzheimer's disease have used that finding to determine that it should be possible to forecast which type of dementia will develop over time—a form of personalized ...

Researchers classify Alzheimer's patients in six subgroups

December 5, 2018
Researchers studying Alzheimer's disease have created an approach to classify patients with Alzheimer's disease, a finding that may open the door for personalized treatments.

Neuroscientists pinpoint genes tied to dementia

December 3, 2018
A UCLA-led research team has identified genetic processes involved in the neurodegeneration that occurs in dementia—an important step on the path toward developing therapies that could slow or halt the course of the disease. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.