Novel mechanism of insulin resistance in type 2 diabetes

September 17, 2015, Karolinska Institutet
Credit: Darren Lewis/public domain

Insensitivity to insulin, also called insulin resistance, is associated with type 2 diabetes and affects several cell types and organs in the body. Now, scientists from Sweden's Karolinska Institutet have discovered a mechanism that explains how insulin-producing cells can be insulin resistant and insulin sensitive at the same time.

The findings are being published in the journal Cell Reports, and may lead to future novel for type 2 diabetes.

Insulin is critical in lowering blood glucose concentration. Individuals with type 2 diabetes suffer from and this means that their cells/organs are insensitive to insulin. In the body tries to compensate by producing more insulin, and also by increasing the number of . Finding new treatment strategies is only possible by gaining a greater understanding of what happens in the body of a diabetic patient. One scientific challenge is to explain how a cell/organ at the same time can be insulin resistant in one biological function and insulin sensitive in another.

Drs Barbara Leibiger and Ingo Leibiger, both members of Professor Per-Olof Berggren's research group at the Department of Molecular Medicine and Surgery, Karolinska Institutet, are particularly interested in the insulin-producing beta cells.

"The beta cell must have insulin to work properly", says Barbara Leibiger, PhD, Associate Professor, and lead author of the current study. "In a person with diabetes, the beta cells become insensitive to insulin."

The researchers have previously shown that the beta cell has two receptors with different biological functions, insulin receptor A and insulin receptor B. In the current study, they found that under diabetic conditions, even though B is insulin insensitive for one signalling pathway, insulin can under these conditions instead activate a different signalling pathway, leading to beta cell proliferation. The researchers also identified the factor, PI3K-C2α, that caused the switch from one signalling pathway to another.

"The results are important since it explains how the beta cell can go from a differentiated state to a proliferative state", says Ingo Leibiger, PhD, Associate Professor, who co-supervised the current study with Professor Berggren. "This means that the cells change from being glucose-responsive to instead increase in number."

According to the study authors, also including researchers from the Pohang University of Science and Technology, Republic of Korea, factors involved in the re-routing of the signal represent tentative therapeutic targets in the treatment of .

Explore further: Researchers find a potential target for the treatment of type 2 diabetes

More information: 'PI3K-C2α Knockdown Results in Rerouting of Insulin Signaling and Pancreatic Beta Cell Proliferation', Barbara Leibiger, Tilo Moede, Meike Paschen, Na-Oh Yunn, Jong Hoon Lim, Sung Ho Ryu, Teresa Pereira, Per-Olof Berggren, and Ingo B. Leibiger, Cell Reports, October 06, 2015 paper issue, online first September 17, 2015.

Related Stories

Researchers find a potential target for the treatment of type 2 diabetes

June 18, 2015
Currently, there are more than 350 million type 2 diabetics and according to the World Health Organization (WHO) by 2030 it will be the 7th leading cause of death worldwide.

Cellular extensions with a large effect: Study explains the link between cilia and diabetes

November 6, 2014
Tiny extensions on cells, cilia, play an important role in insulin release, according to a new study, which is published in Nature Communications. The researchers report that the cilia of beta cells in the pancreas are covered ...

Mechanism behind age-dependent diabetes discovered

September 17, 2014
Ageing of insulin-secreting cells is coupled to a progressive decline in signal transduction and insulin release, according to a recent study by researchers at Karolinska Institutet in Sweden. The finding, which is published ...

New findings on glucagon synthesis

December 3, 2012
Researchers at Karolinska Institutet in Sweden have shown that the cells that produce glucagon are stimulated by the hormone itself. A previous study by the same group demonstrated that this principle also applies to insulin. ...

'Crosstalk' gives clues to diabetes

June 15, 2015
Sometimes, listening in on a conversation can tell you a lot. For Mark Huising, an assistant professor in the Department of Neurobiology, Physiology and Behavior at the UC Davis College of Biological Sciences, that crosstalk ...

New mechanism regulating insulin secretion may explain genetic susceptibility to diabetes

February 4, 2013
New Zealand research revealing a new mechanism for how glucose stimulates insulin secretion may provide a new explanation for how a gene that makes people more susceptible to diabetes – called TCF7L2 – actually contributes ...

Recommended for you

Belly fat promotes diabetes under orders from liver

March 21, 2018
The fat that builds up deep in the abdomen—more than any other type of body fat—raises the risk of insulin resistance and type 2 diabetes. Researchers have known that abdominal fat becomes dangerous when it becomes inflamed ...

Consuming low-calorie sweeteners may predispose overweight individuals to diabetes

March 18, 2018
Consumption of low-calorie sweeteners could promote metabolic syndrome and predispose people to prediabetes and diabetes, particularly in individuals with obesity, a new study on human fat-derived stem cells and fat samples ...

Are high blood glucose levels an effect rather than the cause of diabetes?

March 15, 2018
Insulin resistance and elevated blood glucose levels are considered to be the cause of type 2 diabetes. However, scientists from the German Cancer Research Center (DKFZ) and Heidelberg University Hospital have now provided ...

Smoking linked with higher risk of type 2 diabetes

March 15, 2018
The prevalence of diabetes has increased almost 10-fold in China since the early 1980s, with one in 10 adults in China now affected by diabetes. Although adiposity is the major modifiable risk factor for diabetes, other research ...

Social support and machine learning are at the core of a student-developed app for people with diabetes

March 14, 2018
Diabetes is the seventh leading cause of death in the U.S., and nearly 10 percent of the population suffers from this chronic disease, according to the Centers for Disease Control and Prevention.

Toxic proteins and type 2 diabetes

March 9, 2018
Nearly a half-billion people worldwide live with type 2 diabetes. Yet despite the disease's sizeable and increasing impact, its precise causes remain murky. Current scientific thinking points to two key processes: insulin ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.