Neuron responsible for alcoholism found

September 2, 2015 by Christina Sumners, Texas A&M University
Texas A&M team finds neuron responsible for alcoholism
Work at the Texas A&M Health Science Center could ultimately lead to a cure for alcoholism and other addictions.

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

A study, published in the Journal of Neuroscience by researchers at the Texas A&M Health Science Center College of Medicine, finds that consumption alters the structure and function of neurons in the dorsomedial striatum, a part of the brain known to be important in goal-driven behaviors. The findings could be an important step toward creation of a drug to combat alcoholism.

"Alcoholism is a very common disease," said Jun Wang, M.D., Ph.D., the lead author on the paper and an assistant professor in the Department of Neuroscience and Experimental Therapeutics at the Texas A&M College of Medicine, "but the mechanism is not understood very well."

Now, Wang and his team have helped come a little closer to that understanding. Using an animal model, the researchers determined that alcohol actually changes the physical structure of medium spiny neurons, the main type of cell in the striatum. These neurons can be thought of like a tree, with many branches, and many small protrusions, or spines, coming off of them. They each have one of two types of dopamine receptors, D1 or D2, and so can be thought of as either D1 or D2 neurons. D1 neurons are informally called part of a "go" pathway in the brain, while D2 neurons are in the "no-go" pathway. In other words, when D2 neurons are activated, they discourage action—telling you to wait, to stop, to do nothing.

Although it is well known that the neurotransmitter dopamine is involved in addiction, this study goes further, showing that the dopamine D1 receptor also plays an important role in addiction. The team found that periodic consumption of large amounts of alcohol acts on D1 neurons, making them much more excitable, which means that they activate with less stimulation.

"If these neurons are excited, you will want to drink alcohol," Wang said. "You'll have a craving." That is to say, when neurons with D1 receptors are activated, they compel you to perform an action—reaching for another bottle of tequila, in this case. This then creates a cycle, where causes easier activation, and activation causes more drinking.

These changes in activation of D1 neurons might be related to the physical changes happening at the sub-cellular level in brains that have been exposed to alcohol. They have longer branching and more of the mature, mushroom-shaped spines—the type that stores long-term memories—than their abstaining counterparts.

Conversely, the placebo group, the ones not exposed to alcohol, tended to have more of the immature versions of the mushroom-shaped spines in D1 neurons of their brains. The total number of spines didn't change in the two groups, but the ratio between mature and immature was dramatically different between the alcohol group and the placebo group. This has important implications for memory and learning in .

"When you drink alcohol, long-term memory is enhanced, in a way," Wang said. "But this memory process is not useful—in fact, it underlies addiction since it affects the 'go' neurons." Because there was no difference in the number of each type of spine in the D2 (no-go) neurons of alcohol-consuming and control models, the researchers realized there was a specific relationship between D1 neurons and alcohol consumption.

"We're now able to study the brain at the neuron-specific and even spine-specific level," Wang said.

How do you determine which neuron, which type of neurons or which group of neurons is responsible for a specific disease? That's what the next part of the study tried to answer.

The alcohol-consuming animal models with the increased mature spines in D1 neurons also showed an increased preference to drink large quantities of alcohol when given the choice.

"Even though they're small, D1 receptors are essential for alcohol consumption," Wang said.

Furthermore, and perhaps most excitingly, when those same animal models were given a drug to at least partially block the D1 receptor, they showed much-reduced desire to drink alcohol. However, a drug that inhibited the D2 had no effect. "If we suppress this activity, we're able to suppress ," Wang said. "This is the major finding. Perhaps in the future, researchers can use these findings to develop a specific treatment targeting these ."

The study, which was co-authored with from the University of California San Francisco, was supported by a grant from the National Institute on Alcohol Abuse and Alcoholism (NIAAA).

"My ultimate goal is to understand how the addicted works," Wang said, "and once we do, one day, we'll be able to suppress the craving for another round of drinks and ultimately, stop the cycle of alcoholism."

Explore further: Faced with decisions, humans may be wired to say, 'no'

More information: Journal of Neuroscience, www.jneurosci.org/content/35/33/11634.abstract

Related Stories

Faced with decisions, humans may be wired to say, 'no'

May 27, 2015
We may cave in to peer pressure, marketing and persuasion, but faced with decisions, the default response programmed into our brains is to say "no", a recent study suggests. 

Scientists find that nicotine use increases compulsive alcohol consumption

April 14, 2015
Why do smokers have a five to ten times greater risk of developing alcohol dependence than nonsmokers? Do smokers have a greater tendency toward addiction in general or does nicotine somehow reinforce alcohol consumption?

Researchers identify pathway that may protect against cocaine addiction

April 16, 2013
(Medical Xpress)—A study by researchers at the National Institutes of Health gives insight into changes in the reward circuitry of the brain that may provide resistance against cocaine addiction. Scientists found that strengthening ...

Receptor limits the rewarding effects of food and cocaine

July 12, 2011
(Medical Xpress) -- Researchers have long known that dopamine, a brain chemical that plays important roles in the control of normal movement, and in pleasure, reward and motivation, also plays a central role in substance ...

Alcohol corrupts body movements by inhibiting sodium-potassium pumps in the cerebellum

May 4, 2015
Alcohol is used, and in some cases abused, by millions of people worldwide. How it acutely changes brain function to cause inebriation, and chronically changes brain function to cause dependency, is largely unknown. The latter ...

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

RMQ
not rated yet Sep 03, 2015
Alcohol consumption is known for increasing impulsive behavior. If the D1 neurons are very active, then less impulse regulation, less control of everything, as alcohol drinkers exemplify.
DonGateley
not rated yet Sep 07, 2015
As a long time AA member I always knew that all the theories on what causes alcoholism were at best shaky and at worst just rationalizations. It was always clear to me that what causes alcoholism is drinking alcohol. My opinion was never popular and I'm glad to get some scientific vindication.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.