Targeting mutant proteins might be silver bullet for neurodegenerative diseases

October 21, 2015, Salk Institute
From left, this picture shows SRI Professor Xiang-Lei Yang, SRI researcher Ge Bai and Salk Professor Sam Pfaff. Credit: Salk Institute

Scientists have unraveled how mutant molecules damage the nervous system of people with Charcot-Marie-Tooth (CMT) disease, a group of disorders that hinder people's ability to move and feel sensation in their hands and feet, according to a paper published October 21, 2015 in Nature.

In laboratory testing, the researchers were able to improve symptoms of the disease in mice, raising hopes that they may have found an avenue for treating people with CMT.

The research, a collaboration between scientists from the Salk Institute and The Scripps Research Institute (TSRI), offers promising targets for developing new drugs for the disease. The findings may offer clues to understanding and treating other neurodegenerative disorders, including other forms of CMT.

"This solves a long-running mystery of how a damages the neurons that carry information from the spinal cord to our muscles, resulting in a range of sensory and movement problems," says Samuel Pfaff, a neuroscience professor at the Salk Institute and one of the senior authors on the paper with Xiang-Lei Yang, a professor at TSRI. "It's an exciting finding, as we were able in experiments to reverse the symptoms of the disease by targeting the activity of these proteins."

CMT is a group of hereditary disorders that affects about 1 in every 2,500 people in the United States, making it one of the most common inherited neurological diseases. While different forms of the disease vary in their symptoms and underlying genetic causes, the common thread is that CMT damages the nerves in a person's arms and legs.

Symptoms of the disease, which typically appear in adolescence or early adulthood, include muscle weakness and decreased muscle size, loss of sensation and deformities in the feet and legs. The symptoms typically first appear in the lower extremities, but eventually may move into the hands.

It was known from early work from the Yang lab that one form of the disorder was caused by a gene mutation that resulted in a misshapen form of an enzyme known as GlyRS that serves many roles in cells, but how this resulted in neural damage remained a mystery.

The Salk and TSRI scientists used a range of neuro-genetic, gene therapy, biochemical and structural biology research techniques to discover that the mutant GlyRS enzyme blocked molecular signals important for maintaining the health of motor neurons, the cells that carry messages from the brain to the muscles of the extremities. One surprise was that the GlyRS enzyme, which was commonly thought to remain inside neurons, was actually found outside the neurons. That is where it blocked a protein known as VEGF from connecting with a molecular sensor, named Nrp1, which is found on the surface of the neurons.

"Normally, these molecular messages essentially tell the neurons 'you're healthy,' stimulating them to remain robust and active," says Yang. "By blocking this message, the mutant GlyRS enzyme causes the motor neurons to go into decline and even die, which breaks the connection between the brain and the muscles in the limbs."

Having identified the mechanism by which the gene mutation leads to neuropathy, the researchers tried amplifying the "health" signal to see if they could override the blockade of the mutant GlyRS molecules. When they turned up the volume on the signal, using techniques to increase the production of the signaling molecule, the mice with CMT regained muscle strength and their ability to walk improved significantly.

The findings suggest a possible avenue for developing new therapies for CMT by either dampening the activity of the mutant GlyRS enzymes or amplifying the competing signal that promotes the health of the .

More broadly, the research suggests a new framework for exploring how the mutated proteins interfere with normal processes for neuron survival in other neurodegenerative diseases.

Explore further: Scientists solve mystery of nerve disease genes

More information: CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase, DOI: 10.1038/nature15510

Related Stories

Scientists solve mystery of nerve disease genes

July 4, 2011
For several years, scientists have been pondering a question about a genetic disease called Charcot-Marie-Tooth (CMT) disease type 2D: how can different types of mutations, spread out across a gene, produce the same condition?

Zebrafish study paves the way for new treatments for genetic disorder

June 26, 2013
Scientists from the University of Sheffield have paved the way for new treatments for a common genetic disorder thanks to pioneering research on zebrafish – an animal capable of mending its own heart.

Mice point to a therapy for Charcot-Marie-Tooth disease

August 2, 2011
VIB researchers have developed a mouse model for Charcot-Marie-Tooth (CMT) neuropathy, a hereditary disease of the peripheral nervous system. They also found a potential therapy for this incurable disease. The treatment ...

Scientists see motor neurons 'walking' in real time

September 2, 2015
When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Neurons' broken machinery piles up in ALS

August 12, 2015
A healthy motor neuron needs to transport its damaged components from the nerve-muscle connection all the way back to the cell body in the spinal cord. If it cannot, the defective components pile up and the cell becomes sick ...

Recommended for you

Scientists discover how brain signals travel to drive language performance

June 21, 2018
Effective verbal communication depends on one's ability to retrieve and select the appropriate words to convey an intended meaning. For many, this process is instinctive, but for someone who has suffered a stroke or another ...

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

Researchers find mechanism behind choosing alcohol over healthy rewards

June 21, 2018
A new study links molecular changes in the brain to behaviours that are central in addiction, such as choosing a drug over alternative rewards. The researchers have developed a method in which rats learn to get an alcohol ...

Waking up is hard to do: Prefrontal cortex implicated in consciousness

June 21, 2018
Philosophers have pondered the nature of consciousness for thousands of years. In the 21st century, the debate over how the brain gives rise to our everyday experience continues to puzzle scientists. To help, researchers ...

Study on instinctive behaviour elucidates a synaptic mechanism for computing escape decisions

June 21, 2018
How does your brain decide what to do in a threatening situation? A new paper published in Nature describes a mechanism by which the brain classifies the level of a threat and decides when to escape.

'Antifreeze' molecules may stop and reverse damage from brain injuries

June 21, 2018
The key to better treatments for brain injuries and disease may lie in the molecules charged with preventing the clumping of specific proteins associated with cognitive decline and other neurological problems, researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.