New role for motor neurons discovered

January 13, 2016, Karolinska Institutet
Dr. Abdel El Manira is a Professor of Neuroscience at Karolinska Institutet in Sweden. Credit: Stefan Zimmerman

A new study presented in the journal Nature could change the view of the role of motor neurons. Motor neurons, which extend from the spinal cord to muscles and other organs, have always been considered passive recipients of signals from interneuronal circuits. Now, however, researchers from Sweden´s Karolinska Institutet have demonstrated a new, direct signalling pathway through which motor neurons influence the locomotor circuits that generate rhythmic movements.

Locomotion is essential to all animals and is based on a carefully balanced interaction between the muscles and the brain. Nerve cells are typically able to both receive and generate electrical impulses, which are then relayed to other nerve cells. The nerve cells that make contact with the muscles are called motor neurons, and for almost a century they have been regarded as passive receivers of the detailed motor programmes generated and elaborated by networks of in the . According to this model, motor neurons relay the signals faithfully and unidirectionally to the muscles.

"We have now uncovered an unforeseen role of motor neurons in the elaboration of the final program for motor behaviour," says principal investigator Abdel El Manira at Karolinska Institutet's Department of Neuroscience. "Our unexpected findings demonstrate that motor neurons control locomotor circuit function retrogradely via , so that motor neurons will directly influence transmitter release and the recruitment of upstream excitatory interneurons."

The study was conducted using zebrafish, a common animal model in neurobiological research because they are transparent and relatively easy to manipulate genetically. Through a combination of different methods, the team has shown that there is a direct link via electrical synapses or gap junctions, between motor neurons and the excitatory interneurons that generate rhythmic swimming motions in the fish. These synapses directly connect two neurons, and enable the transfer of electrical signals between these neurons. With the aid of optogenetics, the researchers selectively silenced the activity of motor neurons and showed that they have a strong influence on the locomotor circuit function via gap junctions.

"This study represents a paradigm shift that will lead to a major revision of the long held view of the role of ," says Professor El Manira. "Motor neurons can no longer be considered as merely passive recipients of motor commands - they are an integral component of the circuits generating motor behaviour."

Explore further: Brainstem 'stop neurons' make us halt when we walk

More information: Jianren Song et al. Motor neurons control locomotor circuit function retrogradely via gap junctions, Nature (2016). DOI: 10.1038/nature16497

Related Stories

Brainstem 'stop neurons' make us halt when we walk

November 19, 2015
A population of 'stop cells' in the brainstem is essential for the ability of mice to stop their locomotion, according to a new study by scientists at Karolinska Institutet in Sweden. In an article published in the journal ...

Zebrafish study offers insights into nerve cell repair mechanisms

October 22, 2015
Tropical fish may hold clues that could aid research into motor neuron disease and paralysis caused by spinal cord injury.

Scientists see motor neurons 'walking' in real time

September 2, 2015
When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Scientists unexpectedly find ALS affects sensory neurons involved in movement

November 20, 2015
The same nerves that keep a person from crushing a flower or dropping a water glass are teaching scientists something new about amyotrophic lateral sclerosis.

Study of Lou Gehrig's disease shifts 'origin' focus to brain's motor neurons

November 11, 2014
Lou Gehrig's disease, also known as amyotrophic lateral sclerosis, or ALS, might damage muscle-controlling nerve cells in the brain earlier in the disease process than previously known, according to research from the Cedars-Sinai ...

Anatomical blueprint for motor antagonism identified

October 20, 2011
(Medical Xpress) -- Walking or movement in general, comes so naturally to us, yet it results from a sophisticated interplay between the nervous system and muscles. Little is known about the neuronal blueprint that ensures ...

Recommended for you

How does brain structure influence performance on language tasks?

October 17, 2018
The architecture of each person's brain is unique, and differences may influence how quickly people can complete various cognitive tasks.

Regulating microglial activity may reduce inflammation in neurodegenerative diseases

October 17, 2018
A group of Massachusetts General Hospital (MGH) investigators is proposing that targeting immune checkpoints—molecules that regulate the activity of the immune system—in immune cells called microglia could reduce the ...

New imaging tool captures how sound moves through the chinchilla ear

October 17, 2018
Researchers have developed a new device that can be used to visualize how sound-induced vibrations travel through the ear. The technology is providing new insight into how the ear receives and processes sound waves and, with ...

Sensory perception is not a one-way street

October 17, 2018
When we interact with the world, such as when we reach out to touch an object, the brain actively changes incoming sensory signals based on anticipation. This so-called 'sensory gating' has now been investigated by neuroscientists ...

Environmental factors may trigger onset of multiple sclerosis

October 16, 2018
A new Tel Aviv University study finds that certain environmental conditions may precipitate structural changes that take place in myelin sheaths in the onset of multiple sclerosis (MS). Myelin sheaths are the "insulating ...

Cesarean-born mice show altered patterns of brain development, study finds

October 15, 2018
Cesarean-born mice show altered patterns of cell death across the brain, exhibiting greater nerve cell death than vaginally delivered mice in at least one brain area, a finding by Georgia State University researchers that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.