Researchers work to block harmful behavior of key Alzheimer's enzyme

February 25, 2016
This visual abstract depicts how Ben Halima et al. demonstrate the feasibility of designing drugs targeting the Alzheimer-related enzyme BACE1 without affecting its physiological function. Using structural, biochemical, and cellular approaches, they show that BACE1 inhibitors can be designed to specifically inhibit its disease-causing activity, enhancing their potential as therapeutics without undesired side effects. Credit: Ben Halima et al./Cell Reports 2016

Enzymes rarely have one job. So, attempts to shut down the enzyme that causes the hallmarks of Alzheimer's disease often mean side effects, because these therapies prevent the enzyme from carrying out many other functions. A study appearing February 25 in Cell Reports presents a new therapeutic strategy: blocking the most harmful behavior enzyme while allowing it to work normally otherwise. This potential approach now needs to be further developed and tested in pre-clinical trials.

In the brains of patients with Alzheimer's disease (AD), amyloid precursor protein is broken apart, and the resulting fragments—β-amyloid peptides, or Aβ peptides—aggregate to form plaques. Aβ peptides are produced by the action of two enzymes called beta- and gamma-secretases. Inhibiting either of these enzymes would block the production of toxic Aβ peptides; however, attempts to inhibit gamma-secretase caused problems in clinical trials because the also cleaves more than 20 other proteins important for normal physiology. β-secretase is now considered an alternative therapeutic target for AD, and a wide variety of inhibitors have been developed; however, β-secretase also cleaves several other proteins with normal functions in the body.

In their latest research, Lawrence Rajendran, of the University of Zurich in Switzerland, and his colleagues discovered that, unlike non-amyloid proteins, the Alzheimer's-associated amyloid is cleaved by β-secretase in membrane-bound compartments inside cells, called endosomes. Exploiting this compartmentalization, the team developed an endosomally-targeted β-secretase inhibitor that specifically blocked cleavage of but not non-amyloid proteins. This is the first time such specificity has been achieved, and it thus provides a potentially promising way to treat AD without causing major side effects.

"The current β-secretase inhibitors inhibit both the Alzheimer's disease process and physiologically relevant processes, and this would be a major problem, similar to the gamma-secretase inhibitors that failed in the clinic; however, with our strategy, we now can specifically inhibit the Alzheimer's process thereby avoiding any side effects," says Rajendran. He and his team plan to develop this inhibitor further and test it in .

Explore further: New therapeutic target discovered for Alzheimer's disease

More information: Cell Reports, Ben Halima et al.: "Specific Inhibition of β -Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein" dx.doi.org/10.1016/j.celrep.2016.01.076

Related Stories

New therapeutic target discovered for Alzheimer's disease

March 18, 2014
A team of scientists from the University of California, San Diego School of Medicine, the Medical University of South Carolina and San Diego-based American Life Science Pharmaceuticals, Inc., report that cathepsin B gene ...

Overlooked for 30 years: Novel peptide plays role in Alzheimer's disease

August 31, 2015
A team led by Christian Haass has identified a novel peptide that plays a role in Alzheimer's disease: The previously overlooked eta-amyloid interferes with neuronal function and may antogonize beta-amyloid – a finding ...

Road block as a new strategy for the treatment of Alzheimer's

August 22, 2011
Blocking a transport pathway through the brain cells offers new prospects to prevent the development of Alzheimer's. Wim Annaert and colleagues of VIB and K.U. Leuven discovered that two main agents involved in the inception ...

New drugs to find the right target to fight Alzheimer's disease

August 2, 2013
The future is looking good for drugs designed to combat Alzheimer's disease. EPFL scientists have unveiled how two classes of drug compounds currently in clinical trials work to fight the disease. Their research suggests ...

Molecular modeling of novel potent agents for treating Alzheimer's disease

June 11, 2015
Alzheimer's disease (AD), a severe form of dementia among aged individuals, is caused by accumulation of amyloid-beta (Aβ) peptides in the brain. Numerous types of agents have been developed to suppress the production of ...

Recommended for you

Alzheimer's Tau protein forms toxic complexes with cell membranes

November 22, 2017
The brains of patients with Alzheimer's disease contain characteristic tangles inside neurons. These tangles are formed when a protein called Tau aggregates into twisted fibrils. As a result, the neurons' transport systems ...

Researchers reveal new details on aged brain, Alzheimer's and dementia

November 21, 2017
In a comprehensive analysis of samples from 107 aged human brains, researchers at the Allen Institute for Brain Science, UW Medicine and Kaiser Permanente Washington Health Research Institute have discovered details that ...

Dementia study sheds light on how damage spreads through brain

November 20, 2017
Insights into how a key chemical disrupts brain cells in a common type of dementia have been revealed by scientists.

Researchers describe new biology of Alzheimer's disease

November 20, 2017
In a new study, researchers from Boston University School of Medicine (BUSM) describe a unique model for the biology of Alzheimer's disease (AD) which may lead to an entirely novel approach for treating the disease. The findings ...

Study shows video games could cut dementia risk in seniors

November 16, 2017
Could playing video games help keep the brain agile as we age?

New player in Alzheimer's disease pathogenesis identified

November 14, 2017
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have shown that a protein called membralin is critical for keeping Alzheimer's disease pathology in check. The study, published in Nature Communications, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.