New insights into epilepsy drug Retigabine

February 18, 2016, Rockefeller University Press
The proposed kinetic scheme for the activity of KV7.2/KV7.3 and the effect of Retigabine. The scheme contains five global states, which are different with respect to each other depending on the activation status of the VSD and the pore domain (P). In the scheme, VSD represents the four voltage sensors of the channel. Credit: © 2016 Corbin-Leftwich et al., 2016

A study published ahead of print in the The Journal of General Physiology has revealed new insights into Retigabine, a known pharmacological treatment for epilepsy.

Epilepsy is a family of encephalopathies characterized by abnormal synchronous and rhythmic neuronal activity in the brain that results in seizures. It is one of the most common disorders of the brain and has been diagnosed in 5.1 million people in the United States, according to the Centers for Disease Control and Prevention.

The heteromeric neuronal KV7.2/KV7.3 channel is the assembly of KV7 subunits most commonly found in the central nervous system. Mutations that detrimentally affect the function of neuronal KV7 channels cause hyperexcitability syndromes such as benign familial neonatal seizures, early onset epileptic encephalopathy, and peripheral nerve hyperexcitability. Pharmacotherapeutic approaches using drugs such as Retigabine have therefore been implemented to boost the activity of KV7 channels.

However, detailed understanding of the molecular basis for the role of neuronal KV7 channels in hyperexcitability syndromes has been lacking.

In their study using Xenopus laevis oocytes, Aaron Corbin-Leftwich, an undergraduate student at Virginia Commonwealth University, School of Medicine in Richmond, VA, under Carlos A. Villalba-Galea, PhD, assistant professor in the Department of Physiology and Biophysics, and colleagues found that Retigabine reduces excitability by enhancing the resting potential open state stability of KV7.2/KV7.3 channels. The stabilization of the channels that are already opened at neuronal resting potential levels is the clinically relevant effect of the anticonvulsant.

"Retigabine binds to KV7 proteins, causing them to stay open for longer. This allows for a larger flow of potassium ions that are leaving the neuron," the authors note. "This increases the magnitude of the stimulation required to excite neurons, decreasing the chance of spontaneous activity, and reducing unwanted electrical signals."

These findings may help in further refinement of the available pharmacotherapy for KV7-related encephalopathies, as well as for the design of new ones.

Explore further: Scientists explore a new approach to prevent newborn epilepsies

More information: Aaron Corbin-Leftwich et al. Retigabine holds K 7 channels open and stabilizes the resting potential , The Journal of General Physiology (2016). DOI: 10.1085/jgp.201511517

Related Stories

Scientists explore a new approach to prevent newborn epilepsies

November 23, 2015
Using the substance bumetanide in newborn mice, the scientists succeeded in attenuating the disease progression, allowing the animals to develop almost normally. These research results could pave the way for the development ...

Researchers find anti-seizure drug may reduce alcohol consumption

April 17, 2014
Researchers from Boston University School of Medicine (BUSM) have discovered that the anti-seizure drug ezogabine, reduced alcohol consumption in an experimental model. The findings, reported in the American Journal of Drug ...

Seizures and sudden death: When SUMO 'wrestles' potassium channels

September 3, 2014
A gene crucial for brain and heart development may also be associated with sudden unexplained death in epilepsy (SUDEP), the most common cause of early mortality in epilepsy patients.

Scientists find evidence of a biological trigger for high blood pressure

April 25, 2012
(Medical Xpress) -- Scientists have identified what could be a biological tipping point in the development of high blood pressure, in a discovery that could one day lead to new treatment.

Quiet that ringing in the brain: New drug promises relief from epilepsy and tinnitus with fewer side effects

June 23, 2015
A new drug may treat epilepsy and prevent tinnitus by selectively affecting potassium channels in the brain, UConn neurophysiologist Anastasios Tzingounis and colleagues report in the 10 June Journal of Neuroscience.

New discovery throws light on blood pressure regulation

July 11, 2011
Researchers have discovered that a protein found in the walls of blood vessels plays a key role in maintaining healthy blood pressure; a discovery that could one day lead to new treatments for people with high blood pressure.

Recommended for you

A peek into the interplay between sleep and wakefulness

July 20, 2018
Sleep is an autonomic process and is not always under our direct, voluntary control. Awake or asleep, we are basically under the regulation of two biological processes: sleep homeostasis, commonly known as 'sleep pressure', ...

Paralyzed mice with spinal cord injury made to walk again

July 19, 2018
Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn't completely severed. Why don't the spared portions of the spinal cord keep working? Researchers at Boston Children's Hospital ...

Neural inflammation plays critical role in stress-induced depression

July 19, 2018
A group of Japanese researchers has discovered that neural inflammation caused by the innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development ...

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...

Understanding the neuroscience of binge drinking

July 19, 2018
A new study from researchers at Columbia University Irving Medical Center found that binge drinking impairs working memory in the adolescent brain. The study, in mice, explains why teenagers who binge drink are 15 times more ...

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.