Scientists identify a memory suppressor that may play a role in autism

February 11, 2016, The Scripps Research Institute
Examples of miRNA stem-loops, with the mature miRNAs shown in red. Credit: Wikipedia

Discovered only in the 1990s, microRNAs are short molecules that work within virtually all cells. Typically, each one functions as a "dimmer switch" for the expression of one or more genes, regulating a wide variety of cellular processes, including learning and memory.

In a new study published in the February 11, 2016 issue of the journal Cell Reports, scientists from the Florida campus of The Scripps Research Institute (TSRI), working in collaboration with scientists from the University of California, Irvine, show that one specific microRNA has strong links to a number of neuropsychiatric disorders, including autism spectrum disorder.

The microRNA, known miR-980, serves as a memory suppressor in multiple brain regions of Drosophila, the common fruit fly, a widely recognized substitute for human memory studies.

"We wanted to know what happens to behavior when we change the levels of these microRNAs," said Ron Davis, chair of TSRI's Department of Neuroscience. "When we reduced the level of miR-980, the flies had better memory—that's something new and surprising."

Davis noted that this specific microRNA regulates neuronal excitability—the nerve's capacity for firing—and inhibiting it increased both memory acquisition and stability.

Next, Davis and his colleagues tried to uncover which genes miR-980 regulates, identifying 95 specific targets that might fit that bill. Intriguingly, they found that miR-980 targets and inhibits a gene known as A2bp1. This gene previously had been shown to be involved in susceptibility to autism. In addition, it works to promote memory.

"A2bp1 has been shown to be associated with autism spectrum disorder in humans," said Research Associate Germain Busto, co-first author of the study with Research Associate Tugba Guven-Ozkan. "We discovered that when A2bp1 was overexpressed, it improved memory and that miR-980 also affected when artificially modulated. This offers a powerful model describing the gene network potentially underlying autism spectrum disorder."

"Linking this microRNA to a disease-linked gene may help us to uncover even more nervous system dysfunctions," added Guven-Ozkan.

Davis speculated that the different neuronal networks that form due to varying levels of A2bp1 may account for the range of intellectual abilities observed in in the fly model.

"But the fact that A2bp1 plays an influential role in autism and epilepsy in people brings a real human connection to the study," Davis said. "It's very exciting."

Explore further: Small RNAs found to play important roles in memory formation

Related Stories

Small RNAs found to play important roles in memory formation

June 30, 2015
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have found that a type of genetic material called "microRNA" plays surprisingly different roles in the formation of memory in animal models. In some ...

Scientists find a defect responsible for memory impairment in aging

March 3, 2015
Scientists from the Florida campus of The Scripps Research Institute have discovered a mechanism that causes long-term memory loss due to age in Drosophila, the common fruit fly, a widely recognized substitute for human memory ...

Researchers uncover previously unknown mechanism of memory formation

January 30, 2013
(Medical Xpress)—It takes a lot to make a memory. New proteins have to be synthesized, neuron structures altered. While some of these memory-building mechanisms are known, many are not. Some recent studies have indicated ...

Scientists identify key receptor as potential target for treatment of autism

September 30, 2015
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have uncovered a significant—and potentially treatable—relationship between a chemical that helps transmit signals in the brain and genetic mutations ...

Scientists pinpoint proteins vital to long-term memory

September 12, 2013
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have found a group of proteins essential to the formation of long-term memories.

Researcher discovers new regulatory autism gene

July 1, 2013
A new study by Valerie Hu, Ph.D., professor of biochemistry and molecular medicine at the George Washington University (GW) School of Medicine and Health Sciences (SMHS), reports that RORA, a novel candidate gene for autism ...

Recommended for you

Calorie restriction trial in humans suggests benefits for age-related disease

March 22, 2018
One of the first studies to explore the effects of calorie restriction on humans showed that cutting caloric intake by 15% for 2 years slowed aging and metabolism and protected against age-related disease. The study, which ...

Boosting enzyme may help improve blood flow, fitness in elderly

March 22, 2018
As people age, their blood-vessel density and blood flow decrease, which is why it's harder to maintain muscle mass after 40 and endurance in the later decades, even with exercise. This vascular decline is also one of the ...

Scientists pinpoint cause of vascular aging in mice

March 22, 2018
We are as old as our arteries, the adage goes, so could reversing the aging of blood vessels hold the key to restoring youthful vitality?

Sulfur amino acid restriction diet triggers new blood vessel formation in mice

March 22, 2018
Putting mice on a diet containing low amounts of the essential amino acid methionine triggered the formation of new blood vessels in skeletal muscle, according to a new study from Harvard T.H. Chan School of Public Health. ...

Gradual release of immunotherapy at site of tumor surgery prevents tumors from returning

March 21, 2018
A new study by Dana-Farber Cancer Institute scientists suggests it may be possible to prevent tumors from recurring and to eradicate metastatic growths by implanting a gel containing immunotherapy during surgical removal ...

Cold can activate body's 'good' fat at a cellular level, study finds

March 21, 2018
Lower temperatures can activate the body's 'good' fat formation at a cellular level, a new study led by academics at The University of Nottingham has found.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.