Researchers found new clue to fighting acute myeloid leukaemia

March 29, 2016, National University of Singapore

A study led by researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) has uncovered a new clue that may help fight acute myeloid leukaemia (AML), the most common form of cancer of the blood and bone marrow, and an aggressive type of cancer. The findings open a new door to treating the disease more effectively.

AML usually originates from the , where blood cells are produced. It is characterised by an overproduction of impaired . The differentiation of immature white blood cell precursors into functional white blood cells is an essential process mediating the body's immunity. The research team found that an enzyme, GCN5, is able to inactivate a protein called C/EBPa in myeloid precursor cells. This prevents immature myeloid white blood cells from maturing into granulocytes - which make up about 70 per cent of white blood cells in the body. As a result, healthy white formation is disrupted.

The team, which includes Professor Daniel Tenen, Director of CSI Singapore, Ms Kwok Hui Si, PhD student at the Institute, as well as Dr Deepak Bararia, a former Postdoctoral Fellow at the Institute, discovered that the inactivation of the C/EBPa protein is carried out by acetylation, which is a process by which GCN5 adds an acetyl group onto C/EBPa reducing the ability of C/EBPa to bind to DNA and modulating its transcriptional activity in the cell.

The findings of the study were published in the journal Nature Communications on 24 March 2016.

Identification of this molecular pathway provides clues towards targeting the GCN5-mediated acetylation of C/EBPa in the treatment of leukaemia.

Prof Tenen said, "As AML is a fast-growing cancer, timely treatment soon after diagnosis could increase patients' chances of survival. The current main treatment strategy for AML is cytotoxic chemotherapy. Our research results form the basis of an alternative therapeutic strategy that could potentially reduce remission risks and improve cure rates. Moving forward, the team is looking into designing effective GCN5 inhibitors for therapeutic purposes by studying GCN5 in AML further in depth."

Explore further: A code of silence in acute myeloid leukemia

More information: Deepak Bararia et al. Acetylation of C/EBPα inhibits its granulopoietic function, Nature Communications (2016). DOI: 10.1038/ncomms10968

Related Stories

A code of silence in acute myeloid leukemia

November 19, 2012
The development of acute myeloid leukemia (AML) is associated with a variety of genetic changes. Some of these alterations are epigenetic, wherein the sequence of the genes is unchanged, but chemical modifications to the ...

Researchers discover new therapeutic target for treatment of acute myeloid leukaemia

January 12, 2015
A study by the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) has found new interactions between two molecules involved in acute myeloid leukaemia (AML), STAT3 and PRL-3, ...

New leukemia gene stops blood cells 'growing up'

September 14, 2015
Scientists have identified a gene - FOXC1 - that, if switched on, causes more aggressive cancer in a fifth of acute myeloid leukaemia (AML) patients, according to a Cancer Research UK study published in the journal Cancer ...

Scientists discover new cellular mechanism for potential target protein for acute myeloid leukemia

December 7, 2015
A team of researchers from the National University of Singapore (NUS) has found a new significant correlation between the protein nucleophosmin (NPM) and the development of an aggressive form of blood cancer called acute ...

Protein 'handbrake' halts leukaemia in its tracks

January 19, 2016
Melbourne researchers have showed that they can stop leukaemia in its tracks by targeting a protein that puts the handbrake on cancer cell growth.

Study uncovers key player contributing to healthy maintenance of bone marrow niche

February 17, 2016
A study led by scientists from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) has uncovered a key player contributing to the maintenance of hematopoietic stem cells ...

Recommended for you

Cancer comes back all jacked up on stem cells

March 19, 2018
After a biopsy or surgery, doctors often get a molecular snapshot of a patient's tumor. This snapshot is important - knowing the genetics that cause a cancer can help match a patient with a genetically-targeted treatment. ...

A small, daily dose of Viagra may reduce colorectal cancer risk

March 19, 2018
A small, daily dose of Viagra significantly reduces colorectal cancer risk in an animal model that is genetically predetermined to have the third leading cause of cancer death, scientists report.

Researchers create a drug to extend the lives of men with prostate cancer

March 16, 2018
Fifteen years ago, Michael Jung was already an eminent scientist when his wife asked him a question that would change his career, and extend the lives of many men with a particularly lethal form of prostate cancer.

Machine-learning algorithm used to identify specific types of brain tumors

March 15, 2018
An international team of researchers has used methylation fingerprinting data as input to a machine-learning algorithm to identify different types of brain tumors. In their paper published in the journal Nature, the team ...

Higher doses of radiation don't improve survival in prostate cancer

March 15, 2018
A new study shows that higher doses of radiation do not improve survival for many patients with prostate cancer, compared with the standard radiation treatment. The analysis, which included 104 radiation therapy oncology ...

Joint supplement speeds melanoma cell growth

March 15, 2018
Chondroitin sulfate, a dietary supplement taken to strengthen joints, can speed the growth of a type of melanoma, according to experiments conducted in cell culture and mouse models.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.