Micro heart muscle created from stem cells

April 20, 2016

Scientists at the Gladstone Institutes have invented a new way to create three-dimensional human heart tissue from stem cells. The tissue can be used to model disease and test drugs, and it opens the door for a precision medicine approach to treating heart disease. Although there are existing techniques to make three-dimensional tissues from heart cells, the new method dramatically reduces the number of cells needed, making it an easier, cheaper, and more efficient system.

"We have bioengineered micro-scale heart tissues with a method that can easily be reproduced, which will enable scientists in stem cell biology and the drug industry to study heart cells in their proper context," said first author Nathaniel Huebsch, PhD, a postdoctoral fellow in the Conklin lab at Gladstone. "In turn, this will enhance our ability to discover treatments for heart disease."

Creating heart cells from induced pluripotent (iPSCs) that are derived from a patient's enables scientists to study and test drugs on that patient's specific disease. However, cells made from iPSCs are relatively immature, resembling heart cells in an embryo more than cells in an adult. As such, these cells are inadequate for drug testing because they do not properly predict how a drug will affect adult heart cells. Additionally, heart cells created from iPSCs are challenging to make and work with, so creating large quantities can be difficult. Therefore, the fewer cells needed, the better.

The micro heart muscle addresses both of these concerns. Forcing the cells to organize and stretch into three-dimensional tissue helps spur development and coaxes them into resembling more that can better predict how a drug will affect adult heart cells. Also, the new method—published in the journal Scientific Reports—requires a thousand-fold fewer cells to grow the tissue than other tissue engineering techniques. Using fewer cells allows the scientists to do many more experiments with the same amount of resources.

A unique dog bone-shaped dish helped heart cells created from iPSCs self-organize into three-dimensional, beating micro heart muscle. Video: Nathaniel Huebsch

Working in collaboration with Kevin Healy, PhD, at the University of California, Berkeley, the researchers first generated and from iPSCs. They then combined these cells in a special dish shaped like a tiny dog bone. This unique shape encouraged the cells to self-organize into elongated muscle fibers. Within a couple of days, the micro tissues resembled heart muscle both structurally and functionally. For example, when the researchers tested how the tissue responded to certain drugs that impair fetal heart cells but not adult , the micro heart muscle performed more like adult heart tissue.

"The beauty of this technique is that it is very easy and robust, but it still allows you to create three-dimensional miniature tissues that function like normal tissues," said senior author Bruce Conklin, MD, a senior investigator at Gladstone. "Our research shows that you can create these complex tissues with a simple template that exploits the inherent properties of these to self-organize. We think that the micro heart muscle will provide a superior resource for conducting research and developing therapies for heart disease."

Explore further: New method for producing heart cells may hold the key to treating heart failure

More information: Nathaniel Huebsch et al, Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses, Scientific Reports (2016). DOI: 10.1038/srep24726

Related Stories

New method for producing heart cells may hold the key to treating heart failure

March 3, 2016
Scientists at the Gladstone Institutes have discovered how to make a new type of cell that is in between embryonic stem cells and adult heart cells, and that may hold the key to treating heart disease. These induced expandable ...

Scientists show that skin cells can be used to treat injured hearts

January 8, 2016
Following a heart attack or other heart trauma, the heart is unable to replace its dead cells. Patients are often left with little option other than heart transplants, which are rarely available, or more recently cell therapies ...

Technique could help identify patients who would suffer chemo-induced heart damage

April 18, 2016
Cancer patients who receive a particular type of chemotherapy called doxorubicin run a risk of sustaining severe, lasting heart damage. But it is not possible to predict who is likely to experience this serious side effect. ...

Muscles on-a-chip provide insight into cardiac stem cell therapies

February 8, 2016
Stem cell-derived heart muscle cells may fail to effectively replace damaged cardiac tissue because they don't contract strongly enough, according to a study in The Journal of Cell Biology. The study, "Coupling Primary and ...

Recommended for you

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

As men's weight rises, sperm health may fall

September 20, 2017
(HealthDay)—A widening waistline may make for shrinking numbers of sperm, new research suggests.

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Cell-based therapy success could be boosted by new antioxidant

September 19, 2017
Cell therapies being developed to treat a range of conditions could be improved by a chemical compound that aids their survival, research suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.