Scientists predict cell changes that affect breast cancer growth, opening door to more effective therapies

April 28, 2016
Micrograph showing a lymph node invaded by ductal breast carcinoma, with extension of the tumour beyond the lymph node. Credit: Nephron/Wikipedia

Designing effective new drugs, especially drugs to fight cancer, demands that you know as much as you can about the molecular workings of cancer growth. Without that, it's like planning to fight a war against an enemy you've never seen.

Using a broad spectrum of analytical tools, scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown how sometimes small, often practically imperceptible, structural changes in a key receptor are directly linked to regulating molecules and can produce predictable effects in curbing or accelerating .

This predictive statistical approach, published recently in the journal Molecular Systems Biology, moves science one step closer to the development of more effective structure-based drug design to treat the disease.

"Our long-term goal," said team leader Kendall Nettles, an associate professor at TSRI, "is to be able to predict proliferative or anti-proliferative activity of receptor molecule complexes by identifying structural changes that lead to specific outcomes. In many cases, we can identify structural features that could help guide more effective drug development."

To identify the root of estrogen receptor (ERα) cell signaling that drives breast cancer cell proliferation, Nettles and his colleagues synthesized more than 240 estrogen receptor binding molecules ("ligands") that led the cancer to proliferate, using structural analysis to determine the basis for .

Many current drugs target signaling proteins like the estrogen receptor. For example, the drug tamoxifen (Nolvadex, AstraZeneca) blocks the estrogen receptor's proliferative effects of naturally occurring estrogen in , but can increase the risk of uterine cancer.

Research Associate Sathish Srinivasan, a co-first author of the study with Research Associate Jerome Nwachukwu, pointed out the new research suggests that certain structural changes might be made to the binding pocket to eliminate this negative side effect. "Drugs like tamoxifen can have different effects in different tissues because of structural changes often not discernable using traditional methods," Srinivasan said. "Our approach reveals some mechanisms associated with tissue specificity and several predictive structural features."

To further test these signaling models, the team solved the atomic structure of some 76 different estrogen receptor-ligand complexes to better understand these responses.

"We can predict some of these effects by measuring the distance between two specific carbon atoms of the ," said Nwachukwu.

Nettles concluded, "This is the first time we have been able to use these atomic structures to identify how very small changes from the ligands give different outcomes, leading us towards the goal of predicting which ligands are going to make the most effective treatments for breast cancer."

Explore further: Breast cancer: An improved animal model opens up new treatments

More information: J. C. Nwachukwu et al, Predictive features of ligand-specific signaling through the estrogen receptor, Molecular Systems Biology (2016). DOI: 10.15252/msb.20156701

Related Stories

Recommended for you

Ancient stress response provides clues to cancer resistance

April 25, 2017

Cancer is often able to craftily outwit the best techniques modern medicine has developed to treat it. In an attempt to understand and combat cancer's vaunted prowess, an unusual collaboration between physicists and a leading ...

Studying a catalyst for blood cancers

April 25, 2017

Imagine this scenario on a highway: A driver starts to make a sudden lane change but realizes his mistake and quickly veers back, too late. Other motorists have already reacted and, in some cases, collide. Meanwhile, the ...

Savior of T-cells may be enemy of liver immune cells

April 24, 2017

Researchers at Houston Methodist demonstrated that a surface protein called OX40, responsible for keeping one type of immune system cell alive, can trigger the death of liver immune cells, in turn starting a chain reaction ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.