Sugar-binding protein galectin-9 found to be a new weapon to cure HIV

July 13, 2016
Drs. Pillai (left) and Abdel-Mohsen (right) and their colleagues used cutting-edge technology to discover that a human, sugar-binding protein attacks latent HIV, and may cure HIV disease in patients undergoing antiretroviral therapy. Credit: Blood Systems Research Institute

The ultimate impediment to a cure for HIV infection is the presence of latent, HIV-infected cells, which can reawaken and produce new virus when antiretroviral drug therapy is stopped. These latent, HIV-infected cells are untouched by antiretroviral therapy and are unseen by the immune system. Moving medicine closer to a cure for HIV, scientists at Blood Systems Research Institute (BSRI), the University of California at San Francisco (UCSF), and the University of Hawaii have discovered that the human sugar-binding protein galectin-9 potently forces latent HIV out of hiding, and poisons the virus on its way out.

Building off of their earlier studies that identified key human genes involved in maintaining the latent, hidden state of HIV-infected , the paper's lead author, Dr. Mohamed Abdel-Mohsen, Scientist at BSRI and UCSF School of Medicine, and colleagues used cutting-edge technologies to demonstrate that galectin-9, a beta-galactoside-binding lectin, reactivates latent HIV and renders infected cells visible to the immune system. This concept of therapeutically forcing latent HIV out of hiding as a curative approach is known as the "shock and kill" HIV eradication strategy.

Dr. Satish Pillai, lead researcher on the study, Associate Investigator at BSRI and Associate Director of the UCSF-Gladstone Institute of Virology & Immunology Center for AIDS Research, explains, "For nearly two decades, has demonstrated efficacy in suppressing HIV replication, but these drugs do not completely clear viral infection or fully restore health. We need a means to draw out the virus from its hidden reservoirs within the body and allow the body's own immune system to eliminate it."

Beyond subjecting latent HIV-infected cells to destruction by the , the team found that galectin-9 strongly increases levels of an antiviral protein called "APOBEC3G" in infected cells. APOBEC3G is a lethal mutagen that destroys the genetic code of viruses including HIV. This ensures that virus that comes out of hiding at the hands of galectin-9 will be sterilized on its way out of the cell, preventing any further infection. These findings reveal that galectin-9 is a new weapon in the HIV cure arsenal, promoting eradication of the latent HIV reservoir in infected individuals on antiretroviral therapy.

The research was published in PLoS Pathogens and is an open access manuscript.

An additional revelation in the authors' study is that galectin-9 works by manipulating sugars on the surface of HIV-infected cells to deliver the signals that force latent HIV out of hiding. "Galectin-9 binds to certain classes of sugars on the surface of cells to start a chain reaction that forces HIV out of hiding. There's been very little attention paid to how the sugar coating on the surface of human cells affects the fate of the virus that lies inside. This sugar coating may hold the key to new therapeutics that can be harnessed to cure HIV and possibly a range of other infectious diseases." says Abdel-Mohsen.

Pillai and Abdel-Mohsen also see the potential for galectin-9 to alter the current course of treatment for HIV, which involves life-long adherence to antiretroviral therapies to prevent latent stores of the virus in the body from reactivating and infecting new cells. "Our findings make us optimistic that future HIV treatments can eliminate all traces of the from the body," says Pillai. "Ultimately, we hope that galectin-9 gets us one big step closer to a cure." says Abdel-Mohsen.

Explore further: Study observes potential breakthrough in treatment of HIV

More information: Mohamed Abdel-Mohsen et al, Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation, PLOS Pathogens (2016). DOI: 10.1371/journal.ppat.1005677

Related Stories

Study observes potential breakthrough in treatment of HIV

June 17, 2016
A new study conducted by researchers at the San Francisco VA Medical Center (SFVAMC) observes that pharmacological enhancement of the immune systems of HIV patients could help eliminate infected cells, providing an important ...

Identification of drug combinations that reverse HIV-1 latency

March 30, 2015
There are almost 40 million people throughout the world living with HIV-1/AIDs. While current antiretroviral therapies are able to reduce the amount of virus in the blood, HIV remains present in a latent state within T cells. ...

Early antiretroviral therapy reduces gut inflammation in HIV+ individuals

July 7, 2016
Combination antiretroviral therapy (cART) suppresses HIV replication and significantly slows the progression of disease, enabling HIV+ individuals to effectively manage infection for long periods. One of the manifestations ...

Researchers prove HIV targets tissue macrophages

March 8, 2016
Investigators in the Division of Infectious Diseases at the University of North Carolina School of Medicine have clearly demonstrated that HIV infects and reproduces in macrophages, large white blood cells found in the liver, ...

Targeting HIV 'reservoir' could be first step to understanding how to cure the disease

December 1, 2015
A new clinical trial will test whether it is possible to destroy hidden reservoirs of HIV virus that are a key obstacle to curing the disease.

Cancer drug shows promise in eradicating latent HIV infection

November 29, 2012
Breakthrough drugs have made it possible for people to live with HIV longer than ever before, but more work must be done to actually cure the disease. One of the challenges researchers face involves fully eradicating the ...

Recommended for you

Three-in-one antibody protects monkeys from HIV-like virus

September 20, 2017
A three-pronged antibody made in the laboratory protected monkeys from infection with two strains of SHIV, a monkey form of HIV, better than individual natural antibodies from which the engineered antibody is derived, researchers ...

Fighting HIV on multiple fronts might lead to vaccine

September 20, 2017
A combination antibody strategy could be the key to halting the spread of HIV, according to results from two promising animal studies.

HIV-AIDS: Following your gut

September 18, 2017
Researchers at the University of Montreal Hospital Research Centre (CRCHUM) have discovered a way to slow viral replication in the gastrointestinal tract of people infected by HIV-AIDS.

Study finds cutbacks in foreign aid for HIV treatment would cause great harm

August 30, 2017
Proposed reductions in U.S. foreign aid would have a devastating impact on HIV treatment and prevention programs in countries receiving such aid, an international team of investigators reports. In their paper published online ...

Cancer drug can reactivate HIV

August 24, 2017
People living with HIV must take a combination of three or more different drugs every day for the rest of their lives. Unfortunately, by following this strict treatment plan, they can suffer from side effects ranging from ...

New injectable antiretroviral treatment proved to be as effective as standard oral therapy

August 3, 2017
Intramuscularly administered antiretroviral therapy (ART) may be as effective for HIV treatment as current oral therapies. This is the main conclusion of a Phase II clinical trial carried out by 50 research centers around ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.