Zika infection may affect adult brain cells

August 18, 2016
Illumination of the fluorescent biomarker in green revealed that the adult mouse brain could be infected by Zika in a region called the subgranular zone of the hippocampus. Full of neural progenitor cells, this part of the brain is important in learning and memory. Credit: Laboratory of Pediatric Brain Disease at The Rockefeller University/Cell Stem Cell

Concerns over the Zika virus have focused on pregnant women due to mounting evidence that it causes brain abnormalities in developing fetuses. However, new research in mice from scientists at The Rockefeller University and La Jolla Institute for Allergy and Immunology suggests that certain adult brain cells may be vulnerable to infection as well. Among these are populations of cells that serve to replace lost or damaged neurons throughout adulthood, and are also thought to be critical to learning and memory.

"This is the first study looking at the effect of Zika infection on the adult ," says Joseph Gleeson, adjunct professor at Rockefeller, head of the Laboratory of Pediatric Brain Disease, and Howard Hughes Medical Institute investigator. "Based on our findings, getting infected with Zika as an adult may not be as innocuous as people think."

Although more research is needed to determine if this damage has long-term biological implications or the potential to affect behavior, the findings suggest the possibility that the Zika virus, which has become widespread in Central and South America over the past eight months, may be more harmful than previously believed. The new findings were published in Cell Stem Cell on August 18.

"Zika can clearly enter the brain of adults and can wreak havoc," says Sujan Shresta, a professor at the La Jolla Institute of Allergy and Immunology. "But it's a complex disease—it's catastrophic for , yet the majority of adults who are infected with Zika rarely show detectable symptoms. Its effect on the may be more subtle, and now we know what to look for."

Neuronal progenitors

Early in gestation, before our brains have developed into a complex organ with specialized zones, they are comprised entirely of neural . With the capability to replenish the brain's neurons throughout its lifetime, these are the of the brain. In healthy individuals, neural progenitor cells eventually become fully formed neurons, and it is thought that at some point along this progression they become resistant to Zika, explaining why adults appear less susceptible to the disease.

But current evidence suggests that Zika targets neural progenitor cells, leading to loss of these cells and to reduced brain volume. This closely mirrors what is seen in microcephaly, a developmental condition linked to Zika infection in developing fetuses that results in a smaller-than-normal head and a wide variety of developmental disabilities.

The mature brain retains niches of these neural progenitor cells that appear to be especially impacted by Zika. These niches—in mice they exist primarily in two regions, the subventricular zone of the anterior forebrain and the subgranular zone of the hippocampus—are vital for learning and memory.

Spread by mosquitoes, Zika is widespread in Central and South America, and is becoming more prevalent across the globe. Credit: Alex Wild

Gleeson and his colleagues suspected that if Zika can infect fetal neural progenitor cells, it wouldn't be a far stretch for them to also be able to infect these cells in adults. In a mouse model engineered by Shresta and her team to mimic Zika infection in humans, fluorescent biomarkers illuminated to reveal that adult neural progenitor cells could indeed be hijacked by the virus.

"Our results are pretty dramatic—in the parts of the brain that lit up, it was like a Christmas tree," says Gleeson. "It was very clear that the virus wasn't affecting the whole brain evenly, like people are seeing in the fetus. In the adult, it's only these two populations that are very specific to the stem cells that are affected by virus. These cells are special, and somehow very susceptible to the infection."

Beyond fetal brain infection

The researchers found that infection correlated with evidence of cell death and reduced generation of new neurons in these regions. Integration of new neurons into learning and memory circuits is crucial for neuroplasticity, which allows the brain to change over time. Deficits in this process are associated with cognitive decline and neuropathological conditions, such as depression and Alzheimer's disease.

Gleeson and colleagues recognize that healthy humans may be able to mount an effective immune response and prevent the virus from attacking. However, they suggest that some people, such as those weakened immune systems, may be vulnerable to the virus is a way that has not yet been recognized.

"In more subtle cases, the virus could theoretically impact long-term memory or risk of depression," says Gleeson, "but tools do not exist to test the long-term effects of Zika on adult stem cell populations."

This visual abstract shows the findings of Li et al., that peripheral ZIKV exposure in a mouse model can infect adult neural stem cells in the brain, leading to cell death and reduced proliferation. Thus, in addition to impacting fetal development, ZIKV infection may also have negative effects on the adult brain. Credit: Li et al./Cell Stem Cell

In addition to microcephaly, Zika has been linked to Guillain-Barré syndrome, a rare condition in which the immune system attacks parts of the nervous system, leading to muscle weakness or even paralysis. "The connection has been hard to trace since Guillain-Barré usually develops after the infection has cleared," says Shresta. "We propose that infection of adult could be the mechanism behind this."

There are still many unanswered questions, including exactly how translatable findings in this mouse model are to humans. Gleeson's findings in particular raise questions such as: Does the damage inflicted on progenitor cells by the virus have lasting biological consequences, and can this in turn affect learning and memory? Or, do these cells have the capability to recover? Nonetheless, these findings raise the possibility that Zika is not simply a transient infection in adult humans, and that exposure in the adult brain could have long-term effects.

"The seems to be traveling quite a bit as people move around the world," says Gleeson. "Given this study, I think the public health enterprise should consider monitoring for Zika infections in all groups, not just pregnant women."

Explore further: Fetal mice with Zika infection get microcephaly

More information: Cell Stem Cell, DOI: 10.1016/j.stem.2016.08.005

Related Stories

Fetal mice with Zika infection get microcephaly

May 11, 2016

Mouse fetuses injected with the Asian Zika virus strain and carried to term within their pregnant mothers display the characteristic features of microcephaly, researchers in China report May 11 in Cell Stem Cell. As expected, ...

Two Zika proteins responsible for microcephaly identified

August 11, 2016

USC researchers have tracked down two Zika proteins potentially responsible for thousands of microcephaly cases in Brazil and elsewhere—taking one small step toward preventing Zika-infected mothers from birthing babies ...

Zika virus infects human neural stem cells

March 4, 2016

The Zika virus infects a type of neural stem cell that gives rise to the brain's cerebral cortex, Johns Hopkins and Florida State researchers report March 4 in Cell Stem Cell. On laboratory dishes, these stem cells were found ...

Zika linked to birth defects in six US cases

June 17, 2016

The Zika virus has been linked to birth defects in the fetuses and babies of six women in the United States who were infected while pregnant, US health officials said Thursday.

Why neural stem cells may be vulnerable to Zika infection

March 30, 2016

Zika's hypothesized attraction to human neural stem cells may come from its ability to hijack a protein found on the surface of these cells, using it as an entryway to infection. In Cell Stem Cell on March 30, researchers ...

Recommended for you

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

davejg77
1 / 5 (1) Aug 18, 2016
What will have to happen before we re-visit the unjustified decision to ban DDT?
Jarrod1937
2.3 / 5 (3) Aug 18, 2016
What will have to happen before we re-visit the unjustified decision to ban DDT?

Even if you don't care about the environment, DDT has many negative impacts to human health as well. Our understanding of various issues has improved greatly since the time DDT was initially used. Please do some (proper) research...
bg1
not rated yet Aug 18, 2016
Oh great. So now Zika causes dementia? I wonder if the Republicans in congress will continue to block funding to stop Zika. Or do they want a demented electorate?
Osiris1
not rated yet Aug 21, 2016
No wonder Hillary and the Dumpster...er I mean Trumpster are a little ..shall we say... s - l - o - w! After all, at least ONE of our 'candidates' said 'He loved 'uneducated people!' He is stubborn and stupid, but honest enough to say what he believed. The other one is sly and treacherous and said nothing, but her actions give her true mind away. She loves both uneducated and/or stupid folks even more. BTW. Some fool of a woman in one of those head crab, I mean head scarves tried to run me off the road and into a cemetery today. Just some mohammyden stating her intentions. Hillary wants to let thousands more, no...hundreds of thousands of these ignorant, fanatical, dogmatic and treacherous fools into this nation. I call that treason....AND she wants to disarm us first. She should register as an enemy agent.
entrance
1 / 5 (2) Aug 23, 2016
The problem is that there are too many people on this world. The higher the population density, the easier it can spread viruses. I am ready to help.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.