Scientists discover antibodies that target holes in HIV's defenses

September 12, 2016
The Scripps Research Institute's Dennis Burton, Gabriel Ozorowski and Andrew Ward (left to right) are among the authors of the new paper. Credit: The Scripps Research Institute.

A new study from scientists at The Scripps Research Institute (TSRI) shows that "holes" in HIV's defensive sugar shield could be important in designing an HIV vaccine.

It appears that antibodies can target these holes, which are scattered in HIV's protective sugar or "glycan" shield, and the question is now whether these holes can be exploited to induce protective antibodies.

"It's important now to evaluate future vaccine candidates to more rapidly understand the immune response they induce to particular glycan holes and learn from it," said TSRI Professor Dennis R. Burton, who is also scientific director of the International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and of the National Institutes of Health's Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) at TSRI.

The study, published recently in the journal Cell Reports, was co-led by Burton, TSRI Associate Professor Andrew Ward, also of CHAVI-ID, and Rogier W. Sanders of the University of Amsterdam and Cornell University.

A Clue to Stopping HIV

Every virus has a signature structure, like the architecture of a building. By solving these structures, scientists can put together a blueprint showing where HIV is vulnerable to infection-blocking antibodies.

In the 1990s, scientists discovered that HIV can have random holes in its protective outer shell of glycan molecules. Until now, however, scientists weren't sure if antibodies could recognize and target these holes.

Researchers at Cornell and TSRI had previously designed a stabilized version of an important HIV protein, called the envelope glycoprotein (Env) trimer, to prompt rabbit models to produce antibodies against the virus. In the new study, the plan was to reveal HIV's vulnerabilities by examining where the antibodies bound the virus.

"From work on HIV-positive individuals, we knew that the best way to understand an antibody response is to isolate the individual antibodies and study them in detail," said Laura McCoy, a TSRI, IAVI and CHAVI-ID researcher now at University College London, who served as co-first author of the study with TSRI Senior Research Associate Gabriel Ozorowski, also of TSRI and CHAVI-ID, and Marit J. van Gils of the University of Amsterdam.

To their surprise, when the researchers examined the rabbits' antibodies, they found three rabbits had produced antibodies that targeted the same hole in Env. It appeared that antibodies could indeed target holes in the glycan shield.

"This opened up a whole new concept," said Ozorowski.

If the immune system was targeting this hole—preferring it to other vulnerable spots on Env—maybe holes would be especially important in designing vaccine candidates.

Toward Better Antibodies

By analyzing the genetic sequences of thousands of strains of HIV, the researchers found that 89 percent of strains appear to have a targetable hole in the Env. The virus has a defense mechanism though—it quickly mutates to fill in these gaps.

The researchers speculate that future vaccines might prompt the immune system to create antibodies to target holes. "Targeting a hole could help the immune system get its foot in the door," Ozorowski said. Alternatively, the holes may prove a distraction and should be filled in so the immune system can focus on targeting better sites for neutralizing the virus.

Burton said researchers must investigate the different possibilities, but he emphasized that this new understanding of glycan holes could help researchers narrow down the field of molecules needed in potential HIV vaccines.

Ward added that this same method of "rational" vaccine design—where researchers use a virus's precise molecular details to prompt the to produce specific —can also be applied to efforts to fight other viruses, such as influenza and Ebola viruses.

Explore further: Scientists find surprising trait in anti-HIV antibodies

More information: Laura E. McCoy et al, Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies, Cell Reports (2016). DOI: 10.1016/j.celrep.2016.07.074

Related Stories

Scientists find surprising trait in anti-HIV antibodies

November 17, 2015
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.

New TSRI study shows HIV structure in unprecedented detail

March 3, 2016
A new study from scientists at The Scripps Research Institute (TSRI) describes the high-resolution structure of the HIV protein responsible for recognition and infection of host cells.

In pursuit of HIV vaccine, scientists shed light on antibody origins

December 15, 2015
From Peter Parker's fateful spider bite to Arthur pulling the sword from the stone at the beginning of his reign—everyone likes to know a hero's origin story.

Scientists show AIDS vaccine could work against changeable site on HIV

May 14, 2014
A vaccine or other therapy directed at a single site on a surface protein of HIV could in principle neutralize nearly all strains of the virus—thanks to the diversity of targets the site presents to the human immune system.

Researchers harness antibody evolution on the path to an AIDS vaccine

September 8, 2016
A series of new studies led by scientists at The Scripps Research Institute (TSRI) and the International AIDS Vaccine Initiative (IAVI) describe a potential vaccination strategy to jump-start the selection and evolution of ...

Scientists identify immunological profiles of people who make powerful HIV antibodies

July 29, 2016
One of the main mysteries confounding development of an HIV vaccine is why some people infected with the virus make the desired antibodies after several years, but a vaccine can't seem to induce the same response.

Recommended for you

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

National roll-out of PrEP HIV prevention drug would be cost-effective

October 18, 2017
Providing pre-exposure prophylaxis (PrEP) medication to men who have sex with men who are at high risk of HIV infection (equivalent to less than 5% of men who have sex with men at any point in time) in England would be cost-effective, ...

Regulatory T cells harbor HIV/SIV virus during antiviral drug treatment

October 17, 2017
Scientists at Yerkes National Primate Research Center, Emory University have identified an additional part of the HIV reservoir, immune cells that survive and harbor the virus despite long-term treatment with antiviral drugs.

New research opens the door to 'functional cure' for HIV

October 17, 2017
In findings that open the door to a completely different approach to curing HIV infections, scientists from the Florida campus of The Scripps Research Institute (TSRI) have for the first time shown that a novel compound effectively ...

Researchers create molecule that could 'kick and kill' HIV

October 5, 2017
Current anti-AIDS drugs are highly effective at making HIV undetectable and allowing people with the virus to live longer, healthier lives. The treatments, a class of medications called antiretroviral therapy, also greatly ...

A sixth of new HIV patients in Europe 50 or older: study

September 27, 2017
People aged 50 and older comprise a growing percentage of HIV patients in Europe, accounting for one in six new cases in 2015, researchers said Wednesday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.