Protein linked to high risk of Alzheimer's can be removed from brain without hindering learning

October 4, 2016
brain
White matter fiber architecture of the brain. Credit: Human Connectome Project.

A protein linked to higher risk of Alzheimer's can be removed from the brains of mice without hindering memory and learning, according to a study that addresses whether potential therapeutics targeting this protein would have detrimental side effects.

The study from the Peter O'Donnell Jr. Brain Institute also showed, however, that the protein's absence in other parts of the body hinders brain function as rise. This result substantiates previous research that indicated cardiovascular health affects the brain.

Researchers focused on the removal of apolipoprotein E (ApoE), which in a certain form can support the buildup of toxic plaques in the brains of Alzheimer's patients. Studies elsewhere have sought to determine whether reducing ApoE could be an effective treatment in preventing the disease, but a lingering question has been whether the protein is necessary for healthy brain function.

The study found that mice can maintain their learning and memory when virtually all ApoE is removed from the brain but kept present in the liver to filter cholesterol. Mice that lacked ApoE in both the brain and liver experienced unhealthy and lost cognitive function.

More research is needed to determine what causes the cardiovascular issues to affect the brain, said Dr. Joachim Herz, the study's Principal Investigator and Professor of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics at the O'Donnell Brain Institute at UT Southwestern Medical Center.

But the findings, published in The Journal of Neuroscience, add support to the belief that reducing ApoE in the brain could eventually be a viable therapeutic option for treating Alzheimer's.

"This approach still holds potential," said Dr. Herz, holder of the Thomas O. and Cinda Hicks Family Distinguished Chair in Alzheimer's Disease Research and Director of the Center for Translational Neurodegeneration Research.

ApoE has several roles in the body, including transporting cholesterol and related molecules such as β-amyloid that form plaques in the brains of Alzheimer's patients if not properly filtered or removed.

The type of ApoE produced by the ApoE gene determines how effectively the amyloid is removed from the brain. ApoE2 is the most effective, ApoE3 is in the middle and ApoE4 is the most likely to allow for the buildup of amyloid plaques. People whose genes produce ApoE4 are at high risk of developing Alzheimer's.

Studies are ongoing at UT Southwestern and elsewhere to further understand the various effects that ApoE4 removal has on and body function.

Explore further: Scientists reveal why people with the ApoE4 gene are more susceptible to Alzheimer's disease

Related Stories

Scientists reveal why people with the ApoE4 gene are more susceptible to Alzheimer's disease

August 17, 2016
For decades, scientists have known that people with two copies of a gene called apolipoprotein E4 (ApoE4) are much more likely to have Alzheimer's disease at age 65 than the rest of the population. Now, researchers at the ...

Normal cognition in patient without apolipoprotein E, risk factor for Alzheimer's

August 11, 2014
A 40-year-old California man exhibits normal cognitive function although he has no apolipoprotein E (apoE), which is believed to be important for brain function but a mutation of which is also a known risk factor for Alzheimer ...

An anti-apoE4 specific monoclonal antibody counteracts the pathological effects of apoE4 in vivo

June 30, 2016
The pathological hallmarks of Alzheimer's disease (AD), viz defective Aβ and tau proteins, have been the center of AD-directed therapeutic studies. Although this approach still remains valid, it has not yet produced clinically ...

Malfunctioning protein a cause of Alzheimer's plaques

June 30, 2011
(Medical Xpress) -- In a new study published in Science Translational Medicine, scientists from the Washington University School of Medicine in St Louis reveal their discovery of a protein made by an Alzheimer’s gene ...

Possible biological function for the Alzheimer protein amyloid-beta

November 4, 2015
A new study from Karolinska Institutet shows that amyloid-β-peptides, which are thought to be toxic and a suspected cause of Alzheimer's disease, actually have a biological function. The discovery, which is published in ...

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

Bacteria found in Alzheimer's brains

July 17, 2017
Researchers in the UK have used DNA sequencing to examine bacteria in post-mortem brains from patients with Alzheimer's disease. Their findings suggest increased bacterial populations and different proportions of specific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.