Researcher develops mouse model for studying development of visual cortex

November 30, 2016

A day by day log of cortical electric activity in the mouse visual cortex was published in the Journal of Neuroscience by George Washington University (GW) researcher Matthew Colonnese, Ph.D. This research is the first to establish a mouse model for human fetal electrographic development. The mouse is an important preclinical model of disease and development; and Colonnese's model will give key information for understanding cortical circuit development in humans.

"It is a major benefit to have a developmental mouse model, since there are so many other mouse models of disease and there is such a large gap in our understanding of the normal progression of the developing cortex," said Colonnese, assistant professor of pharmacology and physiology at the GW School of Medicine and Health Sciences. "Having this will help us identify critical checkpoints for normal development."

Colonnese and his research team used EEG to track daily changes in brain oscillations, which coordinate neural activities in the central nervous system. The brain oscillations of infants look very different from adults, but if the young oscillations transform to become adult oscillations, or if they are a completely different phenomena, is unknown. One key finding of this research is that slow, spindle-shaped oscillations, similar to those observed in human preterm infants, transform into the rapid in adults that are associated with visual processing. By contrast, the idling state of the brain engaged during sleep does not emerge until later in development.

"We are trying to provide an atlas for neural development, so that if you see abberent brain activity in the clinic, you know which part of the is affected and why, which could form a basis for further treatment," said Colonnese. "This study is the first step to defining which types of patterns first come online, so we can break down the circuitry."

Building on this research, future studies may look at signs of neurodevelopmental disorders, such as epilepsy, autism, or schizophrenia, during . With this model, any early defects will be better visible.

Explore further: New study finds 'amplifier' helps make connections in the fetal brain

More information: J. Shen et al. Development of Activity in the Mouse Visual Cortex, Journal of Neuroscience (2016). DOI: 10.1523/JNEUROSCI.1903-16.2016

Related Stories

How the brain consolidates memory during deep sleep

April 14, 2016

Research strongly suggests that sleep, which constitutes about a third of our lives, is crucial for learning and forming long-term memories. But exactly how such memory is formed is not well understood and remains, despite ...

Team announces mapping of the mouse cortex in 3-D

October 27, 2016

The Allen Institute for Brain Science has completed the three-dimensional mapping of the mouse cortex as part of the Allen Mouse Common Coordinate Framework (CCF): a standardized spatial coordinate system for comparing many ...

Brain diseases manifest in the retina of the eye

October 3, 2016

Diseases of the central nervous system (CNS) may manifest as pathological changes in the retina of the eye. Research from the University of Eastern Finland (UEF) shows that retinal changes may be detected earlier than brain ...

Recommended for you

Computations of visual motion in the brain

May 22, 2017

Botond Roska and his group at the FMI have elucidated how the retina and the visual cortex work together in visual motion perception. They found that cortical cells, which respond preferentially to backward image motion, ...

Flies the key to studying the causes of dementia

May 19, 2017

A research team from the University of Plymouth, University of Southampton and the Alexander Fleming Biomedical Sciences Research Center, Vari, Greece, have studied two structurally-similar proteins in the adult brain and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.