Cellular reprogramming reverses signs of aging

December 15, 2016, Salk Institute
This cartoon depicts turning back the aging clock through cellular regeneration. Credit: Juan Carlos Izpisua Belmonte Lab /Salk Institute

Graying hair, crow's feet, an injury that's taking longer to heal than when we were 20—faced with the unmistakable signs of aging, most of us have had a least one fantasy of turning back time. Now, scientists at the Salk Institute have found that intermittent expression of genes normally associated with an embryonic state can reverse the hallmarks of old age.

This approach, which not only prompted in a dish to look and behave young again, also resulted in the rejuvenation of with a , countering signs of aging and increasing the animals' lifespan by 30 percent. The early-stage work provides insight both into the cellular drivers of aging and possible therapeutic approaches for improving human health and longevity.

"Our study shows that aging may not have to proceed in one single direction," says Juan Carlos Izpisua Belmonte, a professor in Salk's Gene Expression Laboratory and senior author of the paper appearing in the December 15, 2016 issue of Cell. "It has plasticity and, with careful modulation, aging might be reversed."

As people in modern societies live longer, their risk of developing age-related diseases goes up. In fact, data shows that the biggest risk factor for heart disease, cancer and neurodegenerative disorders is simply age. One clue to halting or reversing aging lies in the study of , a process in which the expression of four genes known as the Yamanaka factors allows scientists to convert any cell into induced (iPSCs). Like embryonic stem calls, iPSCs are capable of dividing indefinitely and becoming any cell type present in our body.

"What we and other stem-cell labs have observed is that when you induce cellular reprogramming, cells look younger," says Alejandro Ocampo, a research associate and first author of the paper. "The next question was whether we could induce this rejuvenation process in a live animal."

Credit: Salk Institute

While cellular rejuvenation certainly sounds desirable, a process that works for laboratory cells is not necessarily a good idea for an entire organism. For one thing, although rapid cell division is critical in growing embryos, in adults such growth is one of the hallmarks of cancer. For another, having large numbers of cells revert back to embryonic status in an adult could result in organ failure, ultimately leading to death. For these reasons, the Salk team wondered whether they could avoid cancer and improve aging characteristics by inducing the Yamanaka factors for a short period of time.

To find out, the team turned to a rare genetic disease called progeria. Both mice and humans with progeria show many signs of aging including DNA damage, organ dysfunction and dramatically shortened lifespan. Moreover, the chemical marks on DNA responsible for the regulation of genes and protection of our genome, known as epigenetic marks, are prematurely dysregulated in progeria mice and humans. Importantly, are modified during cellular reprogramming.

Salk Institute researchers discover that partial cellular reprogramming reversed cellular signs of aging such as accumulation of DNA damage. (Left) Progeria mouse fibroblast cells; (right) progeria mouse fibroblast cells rejuvenated by partial reprogramming. Credit: Salk Institute

Using skin cells from mice with progeria, the team induced the Yamanaka factors for a short duration. When they examined the cells using standard laboratory methods, the cells showed reversal of multiple aging hallmarks without losing their skin-cell identity.

"In other studies scientists have completely reprogrammed cells all the way back to a stem-cell-like state," says co-first author Pradeep Reddy, also a Salk research associate. "But we show, for the first time, that by expressing these factors for a short duration you can maintain the cell's identity while reversing age-associated hallmarks."

Encouraged by this result, the team used the same short reprogramming method during cyclic periods in live mice with progeria. The results were striking: Compared to untreated mice, the reprogrammed mice looked younger; their cardiovascular and other organ function improved and—most surprising of all—they lived 30 percent longer, yet did not develop cancer. On a cellular level, the animals showed the recovery of molecular aging hallmarks that are affected not only in progeria, but also in normal aging.

Induction of reprogramming improved muscle regeneration in aged mice. (Left) impaired muscle repair in aged mice; (right) improved muscle regeneration in aged mice subjected to reprogramming. Credit: Salk Institute

"This work shows that epigenetic changes are at least partially driving aging," says co-first author Paloma Martinez-Redondo, another Salk research associate. "It gives us exciting insights into which pathways could be targeted to delay cellular aging."

Lastly, the Salk scientists turned their efforts to normal, aged mice. In these animals, the cyclic induction of the Yamanaka factors led to improvement in the regeneration capacity of pancreas and muscle. In this case, injured pancreas and muscle healed faster in aged mice that were reprogrammed, indicating a clear improvement in the quality of life by cellular reprogramming.

"Obviously, mice are not humans and we know it will be much more complex to rejuvenate a person," says Izpisua Belmonte. "But this study shows that aging is a very dynamic and plastic process, and therefore will be more amenable to therapeutic interventions than what we previously thought."

The Salk researchers believe that induction of epigenetic changes via chemicals or small molecules may be the most promising approach to achieve rejuvenation in humans. However, they caution that, due to the complexity of aging, these therapies may take up to 10 years to reach clinical trials.

Explore further: Scientists find that for stem cells to be healthy, telomere length has to be just right

More information: Cell, Ocampo et al.: "In vivo amelioration of age-associated hallmarks by partial reprogramming." DOI: 10.1016/j.cell.2016.11.052 , www.cell.com/cell/fulltext/S0092-8674(16)31664-6

Related Stories

Scientists find that for stem cells to be healthy, telomere length has to be just right

December 5, 2016
Ever since researchers connected the shortening of telomeres—the protective structures on the ends of chromosomes—to aging and disease, the race has been on to understand the factors that govern telomere length. Now, ...

Reactivation of embryonic genes leads to muscle aging

December 1, 2016
Developmental genes and pathways strictly regulate embryogenesis. The process is strongly driven by so-called Hox-genes. Now, researchers from the Leibniz Institute on Aging (FLI) in Jena, Germany, can show that one of these ...

Embryonic gene Nanog reverses aging in adult stem cells

July 25, 2016
The fountain of youth may reside in an embryonic stem cell gene named Nanog.

Researchers learn how to grow old brain cells using stem cell technology

October 8, 2015
For the first time, scientists can use skin samples from older patients to create brain cells without rolling back the youthfulness clock in the cells first. The new technique, which yields cells resembling those found in ...

Strict diet combats rare progeria aging disorders

August 25, 2016
Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
1 / 5 (1) Dec 15, 2016
If I WILL LIVE 70 YEARS from NOW and WILL HAVE $100M then, I shall give YOU $1M THEN, If you ARE RESPONSIBLE For THAT Through YOUR YOUR YOUR Aging Research....AND Of NONE ELSE's, Though!
betterexists
3 / 5 (2) Dec 15, 2016
If I WILL LIVE 70 YEARS from NOW and WILL HAVE $100M then, I shall give YOU $1M THEN, If you ARE RESPONSIBLE For THAT Through YOUR YOUR YOUR Aging Research....AND Of NONE ELSE's, Though!

TRUMP May/WILL Be Interested!
HE IS GREAT!
katesisco
1 / 5 (1) Dec 15, 2016
It seems like whatever the research, the use of placental blood is the one ideal factor. Sad.
mjmcdougle
5 / 5 (2) Dec 18, 2016
It seems like whatever the research, the use of placental blood is the one ideal factor. Sad.


Placental blood? There is no mention of it in this study. They used induced pluripotent stem cells, which are *adult* cells that have been manipulated to act like embryonic stem cells. Thanks to ignorant, superstitious, uneducated people like you, embryonic stem cell research is all but halted in this country. Sad.

"Stupidity is the same as evil if you judge by the results."
― Margaret Atwood

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.