Researchers find key genetic driver for rare type of triple-negative breast cancer

January 6, 2017, University of Michigan Health System
Mammary tumors caused by deleting CCN6 look like metaplastic carcinoma. Credit: University of Michigan Health System

For more than a decade, Celina Kleer, M.D., has been studying how a poorly understood protein called CCN6 affects breast cancer. To learn more about its role in breast cancer development, Kleer's lab designed a special mouse model - which led to something unexpected.

They deleted CCN6 from the in the mice. This type of model allows researchers to study effects specific to the loss of the protein. As Kleer and her team checked in at different ages, they found delayed development and mammary glands that did not develop properly.

"After a year, the mice started to form mammary gland tumors. These tumors looked identical to human metaplastic , with the same characteristics. That was very exciting," says Kleer, Harold A. Oberman Collegiate Professor of Pathology and director of the Breast Pathology Program at the University of Michigan Comprehensive Cancer Center.

Metaplastic breast cancer is a very rare and aggressive subtype of - a type considered rare and aggressive of its own. Up to 20 percent of all breast cancers are triple-negative. Only 1 percent are metaplastic.

"Metaplastic breast cancers are challenging to diagnose and treat. In part, the difficulties stem from the lack of mouse models to study this disease," Kleer says.

So not only did Kleer gain a better understanding of CCN6, but her lab's findings open the door to a better understanding of this very challenging subtype of breast cancer. The study is published in Oncogene.

"Our hypothesis, based on years of experiments in our lab, was that knocking out this gene would induce breast cancer. But we didn't know if knocking out CCN6 would be enough to unleash tumors, and if so, when, or what kind," Kleer says. "Now we have a new , and a new way of studying metaplastic carcinomas, for which there's no other model."

One of the hallmarks of metaplastic breast cancer is that the cells are more mesenchymal, a cell state that enables them to move and invade. Likewise, researchers saw this in their mouse model: knocking down CCN6 induced the process known as the epithelial to mesenchymal transition.

"This process is hard to see in tumors under a microscope. It's exciting that we see this in the mouse model as well as in patient samples and cell lines," Kleer says.

The researchers looked at the tumors developed by mice in their new model and identified several potential genes to target with therapeutics. Some of the options, such as p38, already have antibodies or inhibitors against them.

The team's next steps will be to test these potential therapeutics in the lab, in combination with existing chemotherapies. They will also use the mouse model to gain a better understanding of metaplastic breast cancer and discover new genes that play a role it its development.

"Understanding the disease may lead us to better ways to attack it," Kleer says. "For patients with metaplastic breast cancer, it doesn't matter that it's rare. They want - and they deserve - better treatments."

Explore further: Accelerated discovery a triple threat to triple negative breast cancer

More information: E E Martin et al, MMTV-cre;Ccn6 knockout mice develop tumors recapitulating human metaplastic breast carcinomas, Oncogene (2016). DOI: 10.1038/onc.2016.381

Related Stories

Accelerated discovery a triple threat to triple negative breast cancer

January 6, 2017
Houston Methodist Hospital researchers have advanced a potential treatment for metaplastic breast cancer—the most aggressive subtype of triple negative breast cancer, into patients in just under four years.

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016
A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...

Researchers identify protein required for breast cancer metastasis

November 15, 2016
Researchers have identified a new pathway and with it a protein, BRD4, necessary for breast cancer cells to spread.

New approach for cancer prevention in BRCA1 mutation-positive women

December 15, 2016
Women with inherited mutations in the BRCA1 or BRCA2 genes are at substantially higher risk of breast cancer. For these women, effective prevention strategies are their best hope to reduce their breast cancer risk. In FY11, ...

Cells of origin for breast tumours identified

November 2, 2016
Breast cancer is the most common cancer type in women in Sweden and worldwide. It has long been known that not all breast cancers are similar: Luminal tumours consist mostly of cells that are similar to those found in the ...

Identification of a chemotherapy resistance factor in breast cancer patients

May 19, 2016
Chemotherapy is a key part of the standard treatment regimen for triple-negative breast cancer patients whose cancer lacks expression of estrogen and progesterone receptors and the human epidermal growth factor receptor 2 ...

Recommended for you

Compound in citrus oil could reduce dry mouth in head, neck cancer patients

May 21, 2018
A compound found in citrus oils could help alleviate dry mouth caused by radiation therapy in head and neck cancer patients, according to a new study by researchers at the Stanford University School of Medicine.

Scientists reveal likely cause of childhood leukaemia

May 21, 2018
A major new analysis reveals for the first time the likely cause of most cases of childhood leukaemia, following more than a century of controversy about its origins.

Ice cream funds research showing new strategy against thyroid cancer

May 21, 2018
Anaplastic thyroid cancer is almost uniformly fatal, with an average lifespan of about 5 months after diagnosis. And standard treatment for the condition includes 7 weeks of radiation, often along with chemotherapy.

Bladder cancer model could pave the way for better drug efficacy studies

May 21, 2018
Understanding that not all bladder cancers are the same, researchers at the University of North Carolina Lineberger Comprehensive Cancer Center have created a tool that may help them to uncover why only a fraction of patients ...

MR spectroscopy imaging reveals effects of targeted treatment of mutant IDH1 gliomas

May 18, 2018
Using a novel imaging method, a Massachusetts General Hospital (MGH) research team is investigating the mechanisms behind a potential targeted treatment for a subtype of the deadly brains tumors called gliomas. In their report ...

Particle shows promise to prevent the spread of triple-negative breast cancer

May 18, 2018
USC researchers have pinpointed a remedy to prevent the spread of triple-negative breast cancer. Metastatic breast cancer is a leading cause of death for women. The findings appear today in Nature Communications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.