Scientists discover master regulator of cellular aging

January 12, 2017, The Scripps Research Institute
Associate Professor Eros Lazzerini Denchi (left) and Graduate Student Julia Su Zhou Li led the study at The Scripps Research Institute. Credit: Madeline McCurry-Schmidt

Scientists at The Scripps Research Institute (TSRI) have discovered a protein that fine-tunes the cellular clock involved in aging.

This novel , named TZAP, binds the ends of chromosomes and determines how long , the segments of DNA that protect chromosome ends, can be. Understanding telomere length is crucial because telomeres set the lifespan of cells in the body, dictating critical processes such as aging and the incidence of cancer.

"Telomeres represent the clock of a cell," said TSRI Associate Professor Eros Lazzerini Denchi, corresponding author of the new study, published online today in the journal Science. "You are born with telomeres of a certain length, and every time a cell divides, it loses a little bit of the telomere. Once the telomere is too short, the cell cannot divide anymore."

Naturally, researchers are curious whether lengthening telomeres could slow aging, and many scientists have looked into using a specialized enzyme called telomerase to "fine-tune" the biological clock. One drawback they've discovered is that unnaturally long telomeres are a risk factor in developing cancer.

"This cellular clock needs to be finely tuned to allow sufficient cell divisions to develop differentiated tissues and maintain renewable tissues in our body and, at the same time, to limit the proliferation of cancerous cells," said Lazzerini Denchi.

In this new study, the researcher found that TZAP controls a process called telomere trimming, ensuring that telomeres do not become too long.

"This protein sets the upper limit of ," explained Lazzerini Denchi. "This allows cells to proliferate—but not too much."

For the last few decades, the only proteins known to specifically bind telomeres is the telomerase enzyme and a protein complex known as the Shelterin complex. The discovery TZAP, which binds specifically to telomeres, was a surprise since many scientists in the field believed there were no additional proteins binding to telomeres.

"There is a that was found to localize specifically at , but since its discovery, no protein has been shown to specifically localize to telomeres," said study first author Julia Su Zhou Li, a graduate student in the Lazzerini Denchi lab.

"This study opens up a lot of new and exciting questions," said Lazzerini Denchi.

Explore further: Scientists catch misguided DNA-repair proteins in the act

More information: "TZAP: A telomere-associated protein involved in telomere length control" Science, science.sciencemag.org/lookup/ … 1126/science.aah6752

Related Stories

Scientists catch misguided DNA-repair proteins in the act

May 22, 2014
Scientists led by a group of researchers at The Scripps Research Institute (TSRI) in La Jolla, CA, have discovered some of the key proteins involved in one type of DNA repair gone awry.

$89 test kit claims to determine how well your cells are aging. Does it work?

November 28, 2016
A new $89 test claims to calculate the age of the DNA in your cells and tell you how well you are aging. The test, called TeloYears, is the newest in a bunch of mail-order kits that measure the length of telomeres, the caps ...

Scientists find that for stem cells to be healthy, telomere length has to be just right

December 5, 2016
Ever since researchers connected the shortening of telomeres—the protective structures on the ends of chromosomes—to aging and disease, the race has been on to understand the factors that govern telomere length. Now, ...

Aging and cancer: An enzyme protects chromosomes from oxidative damage

December 20, 2016
EPFL scientists have identified a protein that caps chromosomes during cell division and protect them from oxidative damage and shortening, which are associated with aging and cancer.

Researchers uncover key mechanisms of cancer, aging and inflammation

November 7, 2016
A team of University of Pittsburgh researchers has uncovered new details about the biology of telomeres, "caps" of DNA that protect the tips of chromosomes and play key roles in a number of health conditions, including cancer, ...

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

ddaye
not rated yet Jan 12, 2017
My question is, did the aging process itself evolve? In other words might it be either faster or slower if we'd had a different natural selection history? That's one roundabout way to ask whether it's possible to stop in the individual as well.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.