New study provides clues to early T cell immune responses in acute HIV infection

February 15, 2017, The U.S. Military HIV Research Program
HIV infecting a human cell. Credit: NIH

A new study has shown that potent HIV-specific CD8+ T cells that are able to kill HIV-producing cells and reduce the seeding of the HIV reservoir are only detected at peak viremia in acute HIV infection. Findings from the study, which was led by the U.S. Military HIV Research Program (MHRP) of the Walter Reed Army Institute of Research, were published Wednesday in Science Translational Medicine.

HIV-specific CD8+ T cells are that kill cells infected with HIV. CD8+ T cells play a critical role in controlling HIV viremia and could be important in reducing overall numbers of HIV-infected cells in approaches to eradicate HIV.

Researchers studied HIV-specific CD8+ T cells in samples from MHRP's unique RV254 acute infection study, a cohort of individuals who are recruited at the earliest stages of acute HIV infection (AHI), usually within weeks of infection, and placed on ART immediately. RV254 is led by Dr. Jintanat Ananworanich, MHRP's Associate Director for Therapeutics Research, and conducted in collaboration with the Thai Red Cross

In the current study, researchers were able to track immune response through three distinct AHI stages. They found that the HIV-specific CD8+ T cells generated during AHI stage 1 and 2, prior to peak viremia, are delayed in expanding and acquiring effector functions, meaning they are less effective at controlling HIV replication.

In contrast, the fully differentiated HIV-specific CD8+ T cells found at peak viremia, or AHI stage 3, were associated with a steeper viral load decrease after ART initiation. Importantly, these fully-differentiated cells able persist after ART initiation correlated with a decreased seeding of the HIV reservoir.

"Fully differentiated HIV-specific CD8+ T cells were still present two weeks after ART initiation, but their numbers decline drastically," said Dr. Lydie Trautmann, MHRP's Chief of Cellular Immunology and senior author of the paper. "Interventions aiming at prolonging their survival might have profound impact on the HIV reservoir size. The remaining challenge over the next few years will be to find ways to induce and maintain these potent HIV-specific CD8+ effector T cells by immune interventions."

The viral reservoir poses a critical challenge in the quest to cure HIV since it contains in which the HIV virus can lie dormant for many years, thereby avoiding elimination by antiretroviral therapy.

Explore further: Early antiretroviral therapy dramatically reduces HIV DNA set point

More information: "Delayed differentiation of potent effector CD8+ T cells reducing viremia and reservoir seeding in acute HIV infection," Science Translational Medicine, stm.sciencemag.org/lookup/doi/ … scitranslmed.aag1809

Related Stories

Early antiretroviral therapy dramatically reduces HIV DNA set point

August 1, 2016
A team of researchers, led by Drs. Merlin Robb and Jintanat Ananworanich of the U.S. Military HIV Research Program (MHRP) at the Walter Reed Army Institute of Research, has found that when antiretroviral therapy (ART) is ...

Early-capture HIV study allows for characterization of acute infection period

May 18, 2016
Acute HIV infection (AHI) contributes significantly to HIV transmission and may be important for intervention strategies seeking to reduce incidence and achieve a functional cure. In a study by the U.S. Military HIV Research ...

New findings show strikingly early seeding of HIV viral reservoir

July 20, 2014
The most critical barrier for curing HIV-1 infection is the presence of the viral reservoir, the cells in which the HIV virus can lie dormant for many years and avoid elimination by antiretroviral drugs. Very little has been ...

Study observes potential breakthrough in treatment of HIV

June 17, 2016
A new study conducted by researchers at the San Francisco VA Medical Center (SFVAMC) observes that pharmacological enhancement of the immune systems of HIV patients could help eliminate infected cells, providing an important ...

Why some people may not respond to the malaria vaccine

December 20, 2016
Generating protective immunity against the early liver stage of malaria infection is feasible but has been difficult to achieve in regions with high rates of malaria infection. Researchers at the University of Washington ...

Overcoming immune exhaustion from chronic HIV infection

December 3, 2015
Chronic HIV infection results in exhaustion of the immune system, a phenomenon characterized by dysfunctional HIV-specific killer T cells. The exhausted T cells display inhibitory proteins on their surface, and scientists ...

Recommended for you

New method allows scientists to study how HIV persists

April 24, 2018
After 35 years of rigorous research, there is still no cure for HIV. Current drugs can be used to halt the infection, but fall short of reaching hidden reserves of dormant virus that can lurk for life within infected white ...

HIV-1 viruses transmitted at birth are resistant to antibodies in mother's blood

April 19, 2018
Of the genetically diverse population of HIV-1 viruses present in an infected pregnant woman, the few she might transmit to her child during delivery are resistant to attack by antibodies in her blood, according to new research ...

Top HIV cure research team refutes major recent results on how to identify HIV persistence

April 18, 2018
An international team focused on HIV cure research spearheaded by The Wistar Institute in collaboration with the University of Pennsylvania and Vall d'Hebron Research Institute (VHIR) in Barcelona, Spain, established that ...

Scientists discover new way that HIV evades the immune system

April 17, 2018
Scientists have just discovered a new mechanism by which HIV evades the immune system, and which shows precisely how the virus avoids elimination. The new research shows that HIV targets and disables a pathway involving a ...

Team develops new way to fight HIV transmission

April 16, 2018
Scientists at the University of Waterloo have developed a new tool to protect women from HIV infection.

Genetically altered broadly neutralizing antibodies protect monkeys from HIV-like virus

April 16, 2018
Two genetically modified broadly neutralizing antibodies (bNAbs) protected rhesus macaques from an HIV-like virus, report scientists at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.