Matters of the heart: Researchers create 3-D beating heart

February 9, 2017, York University
York U chemistry grad student in the lab purifying a molecule that will eventually be delivered to the surface of the cell to make the cell stick to other cells to form tissues. Credit: York University

Matters of the heart can be complicated, but York University scientists have found a way to create 3D heart tissue that beats in synchronized harmony, like a heart in love, that will lead to better understanding of cardiac health and improved treatments.

York U chemistry Professor Muhammad Yousaf and his team of grad students have devised a way to stick three different types of together, like Velcro, to make heart tissue that beats as one.

Until now, most 2D and 3D in vitro tissue did not beat in harmony and required scaffolding for the to hold onto and grow, causing limitations. In this research, Yousaf and his team made a scaffold free beating tissue out of three cell types found in the heart - contractile , and vascular cells.

The researchers believe this is the first 3D in vitro cardiac tissue with three that can beat together as one entity rather than at different intervals.

"This breakthrough will allow better and earlier drug testing, and potentially eliminate harmful or toxic medications sooner," said Yousaf of York U's Faculty of Science.

In addition, the substance used to stick cells together (ViaGlue), will provide researchers with tools to create and test 3D in vitro cardiac tissue in their own labs to study heart disease and issues with transplantation. Cardiovascular associated diseases are the leading cause of death globally and are responsible for 40 per cent of deaths in North America.

York University researchers have created 3-D heart tissue using three different cell types that beat together in harmony. Credit: York University

"Making in vitro 3D cardiac tissue has long presented a challenge to scientists because of the high density of cells and muscularity of the heart," said Dmitry Rogozhnikov, a chemistry PhD student at York. "For 2D or 3D cardiac tissue to be functional it needs the same high cellular density and the cells must be in contact to facilitate synchronized beating."

Although the 3D was created at a millimeter scale, larger versions could be made, said Yousaf, who has created a start-up company OrganoLinX to commercialize the ViaGlue reagent and to provide custom 3D tissues on demand.

The study, "Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering," was published in Nature Scientific Reports.

3-D tissue imaged using 3-D fluorescent imaging, where many cells laid down sequentially to make attached layers of alternating cell types like membranes in the human body. Credit: York University

Explore further: Tissue engineering advance reduces heart failure in model of heart attack

More information: Dmitry Rogozhnikov et al, Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering, Scientific Reports (2016). DOI: 10.1038/srep39806

Related Stories

Tissue engineering advance reduces heart failure in model of heart attack

January 26, 2017
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer. The cells organized themselves in the scaffold to create engineered heart tissue that beats ...

Scientists create heart cells better, faster, stronger

November 10, 2016
Scientists at the Gladstone Institutes identified two chemicals that improve their ability to transform scar tissue in a heart into healthy, beating heart muscle. The new discovery advances efforts to find new and effective ...

A tool for isolating progenitor cells from human heart tissue could lead to heart repair

October 7, 2015
A*STAR researchers and colleagues have developed a method to isolate and expand human heart stem cells, also known as cardiac progenitor cells, which could have great potential for repairing injured heart tissue.

Muscles on-a-chip provide insight into cardiac stem cell therapies

February 8, 2016
Stem cell-derived heart muscle cells may fail to effectively replace damaged cardiac tissue because they don't contract strongly enough, according to a study in The Journal of Cell Biology. The study, "Coupling Primary and ...

Toward fixing damaged hearts through tissue engineering

January 22, 2014
In the U.S., someone suffers a heart attack every 34 seconds—their heart is starved of oxygen and suffers irreparable damage. Engineering new heart tissue in the laboratory that could eventually be implanted into patients ...

Scientists develop an engineered cardiac tissue model to study the human heart

January 30, 2014
When it comes to finding cures for heart disease scientists are working to their own beat. That's because they may have finally developed a tissue model for the human heart that can bridge the gap between animal models and ...

Recommended for you

Study reveals a promising alternative to corticosteroids in acute renal failure treatment

September 21, 2018
A protein produced by the human body appears to be a promising new drug candidate to treat conditions that lead to acute renal failure. This is shown by a study conducted at São Paulo State University (UNESP) in São José ...

Can a common heart condition cause sudden death?

September 20, 2018
About one person out of 500 has a heart condition known as hypertrophic cardiomyopathy (HCM). This condition causes thickening of the heart muscle and results in defects in the heart's electrical system. Under conditions ...

New drugs could reduce risk of heart disease when added to statins

September 20, 2018
New drugs that lower levels of triglycerides (a type of fat) in blood could further reduce the risk of heart attack when added to statins. These new drugs, which are in various stages of development, could also reduce blood ...

Mediterranean-style diet may lower women's stroke risk

September 20, 2018
Following a Mediterranean-style diet may reduce stroke risk in women over 40 but not in men—according to new research led by the University of East Anglia.

Inflammation critical for preventing heart attacks and strokes, study reveals

September 19, 2018
Inflammation, long considered a dangerous contributor to atherosclerosis, actually plays an important role in preventing heart attacks and strokes, new research from the University of Virginia School of Medicine reveals.

People who walk just 35 minutes a day may have less severe strokes

September 19, 2018
People who participate in light to moderate physical activity, such as walking at least four hours a week or swimming two to three hours a week, may have less severe strokes than people who are physically inactive, according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.