Matters of the heart: Researchers create 3-D beating heart

Matters of the heart: YorkU researchers create 3-D beating heart
York U chemistry grad student in the lab purifying a molecule that will eventually be delivered to the surface of the cell to make the cell stick to other cells to form tissues. Credit: York University

Matters of the heart can be complicated, but York University scientists have found a way to create 3D heart tissue that beats in synchronized harmony, like a heart in love, that will lead to better understanding of cardiac health and improved treatments.

York U chemistry Professor Muhammad Yousaf and his team of grad students have devised a way to stick three different types of together, like Velcro, to make heart tissue that beats as one.

Until now, most 2D and 3D in vitro tissue did not beat in harmony and required scaffolding for the to hold onto and grow, causing limitations. In this research, Yousaf and his team made a scaffold free beating tissue out of three cell types found in the heart - contractile , and vascular cells.

The researchers believe this is the first 3D in vitro cardiac tissue with three that can beat together as one entity rather than at different intervals.

"This breakthrough will allow better and earlier drug testing, and potentially eliminate harmful or toxic medications sooner," said Yousaf of York U's Faculty of Science.

In addition, the substance used to stick cells together (ViaGlue), will provide researchers with tools to create and test 3D in vitro cardiac tissue in their own labs to study heart disease and issues with transplantation. Cardiovascular associated diseases are the leading cause of death globally and are responsible for 40 per cent of deaths in North America.

York University researchers have created 3-D heart tissue using three different cell types that beat together in harmony. Credit: York University

"Making in vitro 3D cardiac tissue has long presented a challenge to scientists because of the high density of cells and muscularity of the heart," said Dmitry Rogozhnikov, a chemistry PhD student at York. "For 2D or 3D cardiac tissue to be functional it needs the same high cellular density and the cells must be in contact to facilitate synchronized beating."

Although the 3D was created at a millimeter scale, larger versions could be made, said Yousaf, who has created a start-up company OrganoLinX to commercialize the ViaGlue reagent and to provide custom 3D tissues on demand.

The study, "Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering," was published in Nature Scientific Reports.

Matters of the heart: YorkU researchers create 3-D beating heart
3-D tissue imaged using 3-D fluorescent imaging, where many cells laid down sequentially to make attached layers of alternating cell types like membranes in the human body. Credit: York University

Explore further

Tissue engineering advance reduces heart failure in model of heart attack

More information: Dmitry Rogozhnikov et al, Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering, Scientific Reports (2016). DOI: 10.1038/srep39806
Journal information: Scientific Reports

Provided by York University
Citation: Matters of the heart: Researchers create 3-D beating heart (2017, February 9) retrieved 22 August 2019 from https://medicalxpress.com/news/2017-02-heart-d.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
90 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more