Link identified between nerve cell proteins and middle-age onset dementia

February 13, 2017
Fused in sarcoma (FUS) and its binding partner proline- and glutamine-rich (SFPQ) regulates Mapt splicing, resulting balanced ratio of tau isoforms. Loss of interaction between FUS and SFPQ alters Mapt splicing, and subsequently increases 4-repeat tau/ 3-repeat tau ratio. This unbalanced tau isoform ratio leads to a neurodegenerative phenotype similar to FTLD. Credit: Yusuke Fujioka, Shinsuke Ishigaki, and Gen Sobue

Nagoya University-led research identifies role for neuronal protein interaction in preventing frontotemporal lobar degeneration, a dementia that starts in middle age.

Frontotemporal lobar degeneration (FTLD) is a type of dementia characterized by personality changes, language dysfunction, and abnormal behavior. It has an earlier onset than Alzheimer's disease, and is associated with a buildup of the in affected nerve cells (neurons).

Nagoya University-led Japanese research has now revealed that loss of the interaction between two RNA binding proteins changes the expression ratio of different forms of tau , producing the FTLD phenotype in mice, and that this could be rescued by rebalancing the tau ratio. The study was reported in Cell Reports.

The RNA binding protein FUS is linked to both familial and sporadic FTLD/ALS. The researchers investigated other proteins that bind the FUS complex within the nucleus and found another RNA metabolism regulator, SFPQ, to be key to the complex formation.

Both FUS and SFPQ control the process known as by which exons of a gene are joined to other exons or skipped altogether to produce different messenger RNAs and, consequently, different versions (isoforms) of the same protein. FUS/SFPQ-regulated alternative splicing of the Mapt gene at exon 10 produces two different tau isoforms (4R-T and 3R-T) that are usually balanced. However, the team showed that FUS or SFPQ silencing resulted in an excess of 4R-T over 3R-T.

The researchers generated mice lacking expression of FUS or SFPQ in a region of their brain important for memory and spatial navigation; the hippocampus. These mice were observed to have abnormal behaviors that resembled those of FTLD.

"They also had a reduced hippocampal volume, loss of neuronal cells, and less nerve cell growth than control animals," study first author Shinsuke Ishigaki says. "Crucially, the mice showed increased levels of a modified form of tau that is a known hallmark of FTLD and other neurodegenerative diseases."

The team attempted to rescue this disease phenotype in by rebalancing the 4R-T/3R-T ratio. "We achieved this by introducing a short sequence of RNA to block 4R-T expression," corresponding author Gen Sobue explains. "This recovered most of the changes associated with FTLD that had been caused by FUS or SFPQ silencing."

The researchers confirmed that the link between FUS/SFPQ and tau isoform regulation also exists in humans using a model from human stem cell-derived neurons and a mini-gene, implying a role for tau isoform imbalance in FTLD development in humans.

Explore further: Is it Alzheimer's disease or another dementia? Marker may give more accurate diagnosis

More information: Shinsuke Ishigaki et al. Altered Tau Isoform Ratio Caused by Loss of FUS and SFPQ Function Leads to FTLD-like Phenotypes, Cell Reports (2017). DOI: 10.1016/j.celrep.2017.01.013

Related Stories

Is it Alzheimer's disease or another dementia? Marker may give more accurate diagnosis

November 30, 2011
New research finds a marker used to detect plaque in the brain may help doctors make a more accurate diagnosis between two common types of dementia – Alzheimer's disease and frontotemporal lobar degeneration (FTLD). ...

Study reveals new link between Alzheimer's disease and healthy aging

August 15, 2011
Alzheimer's disease and frontotemporal lobar degeneration (FTLD) are two of the most prevalent forms of neurodegenerative disorders. In a study published online today in Genome Research, researchers have analyzed changes ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.