Link identified between nerve cell proteins and middle-age onset dementia

February 13, 2017, Nagoya University
Fused in sarcoma (FUS) and its binding partner proline- and glutamine-rich (SFPQ) regulates Mapt splicing, resulting balanced ratio of tau isoforms. Loss of interaction between FUS and SFPQ alters Mapt splicing, and subsequently increases 4-repeat tau/ 3-repeat tau ratio. This unbalanced tau isoform ratio leads to a neurodegenerative phenotype similar to FTLD. Credit: Yusuke Fujioka, Shinsuke Ishigaki, and Gen Sobue

Nagoya University-led research identifies role for neuronal protein interaction in preventing frontotemporal lobar degeneration, a dementia that starts in middle age.

Frontotemporal lobar degeneration (FTLD) is a type of dementia characterized by personality changes, language dysfunction, and abnormal behavior. It has an earlier onset than Alzheimer's disease, and is associated with a buildup of the in affected nerve cells (neurons).

Nagoya University-led Japanese research has now revealed that loss of the interaction between two RNA binding proteins changes the expression ratio of different forms of tau , producing the FTLD phenotype in mice, and that this could be rescued by rebalancing the tau ratio. The study was reported in Cell Reports.

The RNA binding protein FUS is linked to both familial and sporadic FTLD/ALS. The researchers investigated other proteins that bind the FUS complex within the nucleus and found another RNA metabolism regulator, SFPQ, to be key to the complex formation.

Both FUS and SFPQ control the process known as by which exons of a gene are joined to other exons or skipped altogether to produce different messenger RNAs and, consequently, different versions (isoforms) of the same protein. FUS/SFPQ-regulated alternative splicing of the Mapt gene at exon 10 produces two different tau isoforms (4R-T and 3R-T) that are usually balanced. However, the team showed that FUS or SFPQ silencing resulted in an excess of 4R-T over 3R-T.

The researchers generated mice lacking expression of FUS or SFPQ in a region of their brain important for memory and spatial navigation; the hippocampus. These mice were observed to have abnormal behaviors that resembled those of FTLD.

"They also had a reduced hippocampal volume, loss of neuronal cells, and less nerve cell growth than control animals," study first author Shinsuke Ishigaki says. "Crucially, the mice showed increased levels of a modified form of tau that is a known hallmark of FTLD and other neurodegenerative diseases."

The team attempted to rescue this disease phenotype in by rebalancing the 4R-T/3R-T ratio. "We achieved this by introducing a short sequence of RNA to block 4R-T expression," corresponding author Gen Sobue explains. "This recovered most of the changes associated with FTLD that had been caused by FUS or SFPQ silencing."

The researchers confirmed that the link between FUS/SFPQ and tau isoform regulation also exists in humans using a model from human stem cell-derived neurons and a mini-gene, implying a role for tau isoform imbalance in FTLD development in humans.

Explore further: Is it Alzheimer's disease or another dementia? Marker may give more accurate diagnosis

More information: Shinsuke Ishigaki et al. Altered Tau Isoform Ratio Caused by Loss of FUS and SFPQ Function Leads to FTLD-like Phenotypes, Cell Reports (2017). DOI: 10.1016/j.celrep.2017.01.013

Related Stories

Is it Alzheimer's disease or another dementia? Marker may give more accurate diagnosis

November 30, 2011
New research finds a marker used to detect plaque in the brain may help doctors make a more accurate diagnosis between two common types of dementia – Alzheimer's disease and frontotemporal lobar degeneration (FTLD). ...

Study reveals new link between Alzheimer's disease and healthy aging

August 15, 2011
Alzheimer's disease and frontotemporal lobar degeneration (FTLD) are two of the most prevalent forms of neurodegenerative disorders. In a study published online today in Genome Research, researchers have analyzed changes ...

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.