Adult subcortex processes numbers with the same skill as infants

March 20, 2017
Despite major brain differences, many species from spiders to humans can recognize and differentiate relative quantities. Adult primates, however, are the only ones with a sophisticated cortical brain system, meaning that the others rely on a subcortex or its evolutionary equivalent.Carnegie Mellon University scientists wanted to find out whether the adult human subcortex contributes to number processing at all. Published in the Proceedings of the National Academies of Sciences, their study found that the adult subcortex processes numbers at the same level as infants and perhaps other lower-order species, such as guppies and spiders. Credit: Melissa Neely for Carnegie Mellon University

Despite major brain differences, many species from spiders to humans can recognize and differentiate relative quantities. Adult primates, however, are the only ones with a sophisticated cortical brain system, meaning that the others rely on a subcortex or its evolutionary equivalent.

Carnegie Mellon University scientists wanted to find out whether the adult human subcortex contributes to number processing at all. Published in the Proceedings of the National Academy of Sciences, their study found that the adult subcortex processes numbers at the same level as infants and perhaps other lower-order species, such as guppies and spiders.

"This study tells us a great deal about the human subcortex, most importantly that it does not appear to improve from its number abilities in infancy, while the cortex, which is more developed in humans than in any other species, does continuously develop," said Elliot Collins, a Ph.D. student in psychology within CMU's Dietrich College of Humanities and Social Sciences and a M.D. student in the School of Medicine at the University of Pittsburgh.

Because the subcortex's location and small size make it hard to observe in humans using imaging techniques, the researchers conducted a series of experiments using a stereoscope. The stereoscope allowed them to present two consecutive visual stimuli either sequentially to one eye at a time or sequentially to both eyes. This was crucial since signals that enter one eye remain separated in the subcortical part of the visual system.

One hundred made decisions about two groups of dots to the same eye or different eyes. The results showed that numerical judgments in the one eye trials were better under one key condition: when the first and second stimuli's quantity differed greatly, such as having a ratio of 4:1 or 3:1.

"The subcortex is not good at making fine grain number discriminations, and these findings support that," Collins said. "Our results suggest, however, that adults with a fully operational cortex still have a subcortex with the ability to distinguish , yet it operates on a similar level to what is found in babies, other primates and lower level species who can make coarse computations of large ratios such as, for example, which shoal of fish is bigger and should be joined. This provides evidence of a potential evolutionary bridge between the human adult subcortex and the brain of lower order ."

CMU's Marlene Behrmann, the Cowan University Professor of Cognitive Neuroscience, and the University of Massachusetts' Joonkoo Park, who received his master's in human-computer interaction from CMU, also participated in the study.

Explore further: Subcortical damage is 'primary cause' of neurological deficits after 'awake craniotomy'

More information: Numerosity representation is encoded in human subcortex, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1613982114

Related Stories

Subcortical damage is 'primary cause' of neurological deficits after 'awake craniotomy'

February 7, 2013
Injury to the subcortical structures of the inner brain is a major contributor to worsening neurological abnormalities after "awake craniotomy" for brain tumors, reports a study in the February issue of Neurosurgery, official ...

Neuronal feedback could change what we 'see'

March 30, 2016
Ever see something that isn't really there? Could your mind be playing tricks on you? The "tricks" might be your brain reacting to feedback between neurons in different parts of the visual system, according to a study published ...

Researcher develops mouse model for studying development of visual cortex

November 30, 2016
A day by day log of cortical electric activity in the mouse visual cortex was published in the Journal of Neuroscience by George Washington University (GW) researcher Matthew Colonnese, Ph.D. This research is the first to ...

Neuroscientists identify how the brain works to select what we (want to) see

February 21, 2012
If you are looking for a particular object — say a yellow pencil — on a cluttered desk, how does your brain work to visually locate it?

Recommended for you

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

August 17, 2017
When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, ...

Researchers show how particular fear memories can be erased

August 17, 2017
Researchers at the University of California, Riverside have devised a method to selectively erase particular fear memories by weakening the connections between the nerve cells (neurons) involved in forming these memories.

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

New method identifies brain regions most likely to cause epilepsy seizures

August 17, 2017
Scientists have developed a new way to detect which areas of the brain contribute most greatly to epilepsy seizures, according to a PLOS Computational Biology study. The strategy, devised by Marinho Lopes of the University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.