Researchers create model of anorexia nervosa using stem cells

March 14, 2017

An international research team, led by scientists at University of California San Diego School of Medicine, has created the first cellular model of anorexia nervosa (AN), reprogramming induced pluripotent stem cells (iPSCs) derived from adolescent females with the eating disorder.

Writing in the March 14th issue of Translational Psychiatry, the scientists said the resulting AN neurons—the disease in a dish—revealed a novel gene that appears to contribute to AN pathophysiology, buttressing the idea that AN has a strong genetic factor. The proof-of-concept approach, they said, provides a new tool to investigate the elusive and largely unknown molecular and cellular mechanisms underlying the disease.

"Anorexia is a very complicated, multifactorial neurodevelopmental disorder," said Alysson Muotri, PhD, professor in the UC San Diego School of Medicine departments of Pediatrics and Cellular and Molecular Medicine, director of the UC San Diego Stem Cell Program and a member of the Sanford Consortium for Regenerative Medicine. "It has proved to be a very difficult disease to study, let alone treat. We don't actually have good experimental models for eating disorders. In fact, there are no treatments to reverse AN symptoms."

Primarily affecting young female adolescents between ages 15 and 19, AN is characterized by distorted body image and self-imposed food restriction to the point of emaciation or death. It has the highest mortality rate among psychiatric conditions. For females between 15 and 24 years old who suffer from AN, the mortality rate associated with the illness is 12 times higher than the death rate of all other causes of death.

Though often viewed as a non-biological disorder, new research suggests 50 to 75 percent of risk for AN may be heritable; with predisposition driven primarily by genetics and not, as sometimes presumed, by vanity, poor parenting or factors related to specific groups of individuals.

But little is actually known about the molecular, cellular or genetic elements or genesis of AN. In their study, Muotri and colleagues at UC San Diego and in Brazil, Australia and Thailand, took skin cells from four females with AN and four healthy controls, generated iPSCs (stem cells with the ability to become many types of cells) from these cells and induce these iPSCs to become neurons.

(Previously, Muotri and colleagues had created stem cell-derived neuronal models of autism and Williams syndrome, a rare genetic neurological condition.)

Then they performed unbiased comprehensive whole transcriptome and pathway analyses to determine not just which genes were being expressed or activated in AN neurons, but which genes or transcripts (bits of RNA used in cellular messaging) might be associated with causing or advancing the disease process.

No predicted differences in neurotransmitter levels were observed, the researchers said, but they did note disruption in the Tachykinin receptor 1 (TACR1) gene. Tachykinins are neuropeptides or proteins expressed throughout the nervous and immune systems, where they participate in many cellular and physiological processes and have been linked to multiple diseases, including chronic inflammation, cancer, infection and affective and addictive disorders.

The scientists posit that disruption of the tachykinin system may contribute to AN before other phenotypes or observed characteristics become obvious, but said further studies employing larger patient cohorts are necessary.

"But more to the point, this work helps make that possible," said Muotri. "It's a novel technological advance in the field of eating disorders, which impacts millions of people. These findings transform our ability to study how genetic variations alter brain molecular pathways and cellular networks to change risk of AN—and perhaps our ability to create new therapies."

Explore further: Stem cell-derived 'mini-brains' reveal potential drug treatment for rare disorder

More information: P D Negraes et al, Modeling anorexia nervosa: transcriptional insights from human iPSC-derived neurons, Translational Psychiatry (2017). DOI: 10.1038/tp.2017.37

Related Stories

Stem cell-derived 'mini-brains' reveal potential drug treatment for rare disorder

September 8, 2015
Using "mini-brains" built with induced pluripotent stem cells derived from patients with a rare, but devastating, neurological disorder, researchers at University of California, San Diego School of Medicine say they have ...

First human in vitro model of rare neurodegenerative condition created

January 13, 2016
Researchers at University of California, San Diego School of Medicine and Rady Children's Hospital-San Diego have created the first stem cell-derived in vitro cellular model of a rare, but devastating, neurodegenerative condition ...

Multiple models reveal new genetic links in autism

November 11, 2014
With the help of mouse models, induced pluripotent stem cells (iPSCs) and the "tooth fairy," researchers at the University of California, San Diego School of Medicine have implicated a new gene in idiopathic or non-syndromic ...

Neurodevelopmental model of Williams syndrome offers insight into human social brain

August 10, 2016
In a study spanning molecular genetics, stem cells and the sciences of both brain and behavior, researchers at University of California San Diego, with colleagues at the Salk Institute of Biological Studies and elsewhere, ...

Stem cell model offers clues to cause of inherited ALS

June 21, 2011
An international team of scientists led by researchers at the University of California, San Diego School of Medicine have used induced pluripotent stem cells (iPSCs) derived from patients with amyotrophic lateral sclerosis ...

Recommended for you

Before assigning responsibility, our minds simulate alternative outcomes, study shows

October 17, 2017
How do people assign a cause to events they witness? Some philosophers have suggested that people determine responsibility for a particular outcome by imagining what would have happened if a suspected cause had not intervened.

Schizophrenia disrupts the brain's entire communication system, researchers say

October 17, 2017
Some 40 years since CT scans first revealed abnormalities in the brains of schizophrenia patients, international scientists say the disorder is a systemic disruption to the brain's entire communication system.

For older adults, volunteering could improve brain function

October 17, 2017
Older adults worried about losing their cognitive functions could consider volunteering as a potential boost, according to a University of Missouri researcher. While volunteering and its associations with physical health ...

Magic mushrooms may 'reset' the brains of depressed patients

October 13, 2017
Patients taking psilocybin to treat depression show reduced symptoms weeks after treatment following a 'reset' of their brain activity.

Living near a forest keeps your amygdala healthier

October 13, 2017
A study conducted at the Max Planck Institute for Human Development has investigated the relationship between the availability of nature near city dwellers' homes and their brain health. Its findings are relevant for urban ...

Scientists researching drugs that could improve brain function in people with schizophrenia

October 12, 2017
Virginia Commonwealth University researchers are testing if drugs known as HDAC inhibitors improve cognition in patients with schizophrenia who have been treated with the antipsychotic drug clozapine.

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

BubbaNicholson
1 / 5 (1) Mar 16, 2017
"Anorexia Nervosa" is seen in laboratory animals, being pheromone-stimulated puberty delay. Anorexia is stimulated by pheromone emissions in other species, e.g. nesting birds. The continuing expression of axillary and pubic hair (used to disperse pheromones into the air from scent glands, the largest of any species) in AN is highly suggestive. Treat with petroleum jelly over the armpits and pubic area, along with supplied air respiration.
BubbaNicholson
1 / 5 (1) Mar 16, 2017
Also isolate from "stressed females" -- usually the mother and other AN patients. On a ward use oscillating fans. Provide AN patients with healthy adult male facial skin surface lipid by mouth. Keep such male skin surface emissions under seal with activated charcoal, under a hood, with staff using supplied air respirators, too. (The potency of pheromones at the PPB level is common.)
barakn
not rated yet Mar 17, 2017
Bubba, your snake oil is tinged with misogyny.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.