First human in vitro model of rare neurodegenerative condition created

January 13, 2016
Cockayne syndrome has an autosomal recessive pattern of inheritance. Credit: Cburnett /Wikipedia

Researchers at University of California, San Diego School of Medicine and Rady Children's Hospital-San Diego have created the first stem cell-derived in vitro cellular model of a rare, but devastating, neurodegenerative condition called Cockayne syndrome (CS).

The findings are published in the current online issue of the journal Human Molecular Genetics.

CS is characterized by short stature and an appearance of premature aging. Traits include extreme sensitivity to sunlight, abnormally small head size (microcephaly), impaired development of the nervous system, eye problems and a failure to gain weight and grow at the expected rate, called "failure to thrive." While specific symptoms of CS may be treatable, there is no cure and prognosis is poor. Most patients do not survive past their twenties.

Eighty percent of CS cases are caused by mutations in a gene called ERCC6, with codes for a protein called Cockayne Syndrome B (CSB). Past efforts to model the neurological aspects of the disease have proved difficult because existing mouse models do not display classical neurological symptoms.

"What we have needed is a robust human in vitro cellular model - a so-called 'disease in a dish' - that would allow us to understand fundamentally what is happening and which could point us toward possible therapeutic targets and treatments," said senior author Alysson R. Muotri, PhD, associate professor in the UC San Diego School of Medicine departments of Pediatrics and Cellular and Molecular Medicine.

Muotri and colleagues have previously used induced pluripotent stem cells to create neuronal models of autism spectrum disorders. Mirroring those earlier efforts, Muotri and his team generated the in vitro CS cell model by taking skin cells from two individuals with CS, reverting them to induced , then reprogramming the to differentiate as and neurons. The neurons subsequently formed functioning networks, popularly dubbed "mini-brains."

The CS networks allowed researchers to identify areas of cellular dysfunction compared to normal neuronal networks from control models. Specifically, they noted that CSB-deficient neuronal networks displayed altered electrophysiological activity, including diminished ability to grow synaptic connections to other neurons and synchronize activities.

"This work provides an alternative to existing models for studying neural-specific aspects of CS," said Muotri. "It reveals that CSB protein is required for normal neuronal function. It shows the feasibility of constructing a new and relevant human in vitro model with potential clinical interest."

Explore further: Stem cell-derived 'mini-brains' reveal potential drug treatment for rare disorder

More information: Human Molecular Genetics, dx.doi.org/10.1093/hmg/ddw008

Related Stories

Stem cell-derived 'mini-brains' reveal potential drug treatment for rare disorder

September 8, 2015
Using "mini-brains" built with induced pluripotent stem cells derived from patients with a rare, but devastating, neurological disorder, researchers at University of California, San Diego School of Medicine say they have ...

Multiple models reveal new genetic links in autism

November 11, 2014
With the help of mouse models, induced pluripotent stem cells (iPSCs) and the "tooth fairy," researchers at the University of California, San Diego School of Medicine have implicated a new gene in idiopathic or non-syndromic ...

Stem cell model offers clues to cause of inherited ALS

June 21, 2011
An international team of scientists led by researchers at the University of California, San Diego School of Medicine have used induced pluripotent stem cells (iPSCs) derived from patients with amyotrophic lateral sclerosis ...

Premature aging: Scientists identify and correct defects in diseased cells

May 21, 2015
Scientists from the Institut Pasteur and CNRS, in collaboration with scientists from the Institut Gustave Roussy and CEA, have succeeded in restoring normal activity in cells isolated from patients with the premature aging ...

Recommended for you

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

Genes critical for hearing identified

October 12, 2017
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists ...

Team completes atlas of human DNA differences that influence gene expression

October 11, 2017
Researchers funded by the National Institutes of Health (NIH) have completed a detailed atlas documenting the stretches of human DNA that influence gene expression - a key way in which a person's genome gives rise to an observable ...

Genetic advance for male birth control

October 10, 2017
When it comes to birth control, many males turn to two options: condoms or vasectomies. While the two choices are effective, both methods merely focus on blocking the transportation of sperm.

Researchers uncover new congenital heart disease genes

October 9, 2017
Approximately one in every 100 babies is born with congenital heart disease (CHD), and CHD remains the leading cause of mortality from birth defects. Although advancements in surgery and care have improved rates of survival ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.