Researchers make major brain repair discovery in fight against multiple sclerosis

March 15, 2017
Many mature oligos: red = myelin; green = oligodendrocyte cells. Credit: Queen's University, Belfast

Queen's University Belfast scientists have discovered that specific cells from the immune system are key players in brain repair – a fundamental breakthrough that could revolutionise the treatment of debilitating neurological disorders such as multiple sclerosis (MS).

The research study, led by Dr Yvonne Dombrowski and Dr Denise Fitzgerald at the Wellcome-Wolfson Institute for Experimental Medicine at Queen's University Belfast, is being hailed as a landmark study in unravelling the mysteries of how the brain repairs damage. This is crucial in the fight against MS, which affects 2.3 million people world-wide and over 4,500 people in Northern Ireland.

MS is the most common neurological disease affecting young adults and is the result of damage to myelin, the protective sheath surrounding nerve fibres of the central nervous system – the brain, and optic nerve. In MS, the wrongly attacks the covering in the brain and spinal cord, which can lead to symptoms such as vision loss, pain, fatigue and paralysis.

Until now, medical treatment could limit relapses but could not reverse the damage already done by the condition. The exciting aspect of this new research is that the team have uncovered beneficial effects of immune cells in myelin repair that have potential to reverse myelin damage. The study was an including experts in Cambridge, San Francisco, Edinburgh, Maynooth and Nice.

The research breakthrough, which has been published today in Nature Neuroscience, shows that a protein made by certain cells within the immune system triggers the brain's stem cells to mature into oligodendrocytes that repair myelin.

The discovery means that researchers can now use this new knowledge to develop medicines which will boost these particular cells and develop an entirely new class of treatments for the future.

Speaking about the importance of the new research, Dr Dombrowski, who is the lead author of the report, explained: "At Queen's we are taking a unique and fresh approach to uncover how the immune system drives . This knowledge is essential to designing future treatments that tackle neurological diseases, such as MS, in a new way – repairing damage rather than only reducing attacks. In the future, combining these approaches will deliver better outcomes for patients."

Senior author of the study, Dr Denise Fitzgerald from Queen's, experienced a condition similar to MS, called Transverse Myelitis when she was 21 and had to learn to walk again.

Commenting on the findings, Dr Fitzgerald said: "This pioneering research, led by our team at Queen's, is an exciting collaboration of top scientists from different disciplines at Cambridge, San Francisco, Edinburgh, Maynooth and Nice. It is by bringing together these experts from immunology, neuroscience and stem cell biology that we have been able to make this landmark discovery.

"This is an important step forward in understanding how the brain and spinal cord is naturally repaired and opens up new therapeutic potential for myelin regeneration in patients. We continue to work together to advance knowledge and push the boundaries of scientific knowledge for the benefits of patients and society, in a bid to change lives for the better, across the globe."

Dr Sorrel Bickley, Head of Biomedical Research at the MS Society, said: "MS is an unpredictable and challenging condition, and we are committed to driving forward research to find effective treatments for everyone. This exciting study gives us an important understanding of how myelin repair can be promoted, which could open up new areas for treatment development. We welcome this international collaboration led by Northern Ireland, where rates of MS are amongst the highest in the world."

Explore further: MS research could help repair damage affecting nerves

More information: Yvonne Dombrowski et al. Regulatory T cells promote myelin regeneration in the central nervous system, Nature Neuroscience (2017). DOI: 10.1038/nn.4528

Related Stories

MS research could help repair damage affecting nerves

July 21, 2013
Multiple sclerosis treatments that repair damage to the brain could be developed thanks to new research.

Damaged nerve cells communicate with stem cells

October 7, 2015
Nerve cells damaged in diseases such as multiple sclerosis (MS), 'talk' to stem cells in the same way that they communicate with other nerve cells, calling out for 'first aid', according to new research from the University ...

Multiple sclerosis patients could benefit from brain boost

April 6, 2015
Multiple sclerosis patients could one day benefit from treatments that boost their brain function, a study suggests.

Scientists pinpoint molecular signal that drives and enables spinal cord repair

March 17, 2016
Researchers from King's College London and the University of Oxford have identified a molecular signal, known as 'neuregulin-1", which drives and enables the spinal cord's natural capacity for repair after injury.

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Brain takes seconds to switch modes during tasks

October 19, 2017
The brain rapidly switches between operational modes in response to tasks and what is replayed can predict how well a task will be completed, according to a new UCL study in rats.

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Ashoksewg
not rated yet Mar 19, 2017
How can a xald patients benefit from this new method / medicine?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.