A novel protein regulates cancer immunity and could offer a therapeutic target

March 13, 2017, Medical University of South Carolina
A stylized image of a T cell attacking a tumor. Illustration by Emma Vought. Credit: Emma Vought, Medical University of South Carolina

In an article published online ahead of print on March 13, 2017 by the Journal of Clinical Investigation, Medical University of South Carolina (MUSC) investigators report preclinical research showing that moesin, a membrane-domain organizing protein, controls regulatory T cell (Treg) function as well as the abundance and stability of transforming growth factor-beta (TGF-beta) receptors on the surface of cells, providing a potential therapeutic target for cancer immunotherapy.

Their findings show that TGF-beta acts at the protein level to generate Tregs in the tumor microenvironment. Although the human immune system is capable of eradicating cancer, Tregs dampen the immune response and protect against tumor-killing (i.e., cytotoxic) T cells. The MUSC study is the first to show that eliminating moesin reduces TGF-beta receptor expression and subsequent Treg generation to restore anti-tumor immunity.

T cells, a subtype of , can effectively attack and kill when activated by the protein TGF-beta. However, the immune system has a sophisticated network of checks and balances to ensure that the body does not produce so many of these cytotoxic T cells that it harms its own cells and tissues. When the immune reaction is complete, TGF-beta signals naive T cells to become Tregs that suppress and degrade the activated, inflammatory T cells, ensuring that they do not overproduce the immune factors that can lead to autoimmune disease.

Cancer cells have learned to hijack this system of checks and balances to hide from the tumor-killing T cells. Many cancers produce TGF-beta that binds the receptors on the tumor-killing helper T cells so they can't be recruited to fight the tumor. The T cells convert instead to Tregs, which suppress the immune response against the cancer.

Inhibiting moesin could help prevent conversion of naïve T cells into Tregs, thereby restoring the anti-tumor .

"Because moesin supports greater Treg production, we could design moesin inhibitors to halt or slow active TGF-beta signaling and slow down Treg conversion so that anti-tumor T cells can have a chance to see the cancer and eradicate it," explains Zihai Li, M.D., Ph.D., chair of the Department of Microbiology and Immunology at MUSC and senior author on the paper.

Earlier studies by Philip Howe, Ph.D., chair of MUSC's Department of Biochemistry and Molecular Biology and a co-author on the paper, demonstrated that many TGF-beta-mediated epithelial mesenchymal transition genes, including moesin, were repressed by an RNA-binding protein in healthy epithelial cells and that moesin expression could be restored through TGF-beta stimulation.

This ability of TGF-beta to dramatically increase moesin expression led the team to investigate moesin's role in Treg generation. Jointly with other colleagues at MUSC, the team compared the abilities of helper T cells with and without moesin to become iTregs. They found that moesin promotes Treg generation by interacting with a TGF-beta receptor (TβR-II) to make it more available, thereby enhancing TGF-beta signaling. Conversely, TGF-beta signaling was reduced in the absence of moesin, impairing the development and function of Tregs.

Perhaps the most compelling results were provided by studies involving adoptive T cell therapy in a mouse model of melanoma. In adoptive T cell therapy, tumor-killing T cells are "harvested" from a human or animal with cancer and amplified or otherwise "supercharged" before being reinfused into the donor. Although these reinfused cells can be very effective at killing tumors, they do not always survive long-term, setting the stage for recurrence.

The MUSC research team showed that these reinfused anti-cancer CD8+ T cells not only underwent rapid activation and expansion in mice lacking moesin, but that they also survived longer, reducing the likelihood of recurrence. Indeed, after adoptive T cell transfer, all of the mice having moesin relapsed while most of the mice lacking moesin were cured.

"When the mice lacking moesin had no recurrence, this was really exciting. We were not only deleting moesin but, when we gave T cells to the active tumors, those T cells could control the cancer for a very long time," explains Ephraim Ansa-Addo, Ph.D., a postdoctoral fellow in the Department of Microbiology and Immunology and lead author on the article.

These findings suggest that moesin could be a therapeutic target in developing new treatments for cancer and Treg-related immune disorders. Chemical modulators of moesin could control the function of T by inhibiting moesin in cancers or inducing it to treat autoimmune diseases. Moesin modulators could also be combined with current immunotherapy regimens.

"These findings are very interesting for the field and provide a lot of directions for further research into alternative therapies," says Li.

Explore further: A novel cancer immunotherapy shows early promise in preclinical studies

More information: Ephraim A. Ansa-Addo et al, Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling, Journal of Clinical Investigation (2017). DOI: 10.1172/JCI89281

Related Stories

A novel cancer immunotherapy shows early promise in preclinical studies

January 11, 2017
Scientists at the Medical University of South Carolina (MUSC) have designed an antibody-based therapy that could target the functions of TGF-beta that cause cancer. The therapy targets TGF-beta where it is particularly dangerous—docked ...

Researchers identify new target for cancer immunotherapy

January 17, 2017
Massachusetts General Hospital investigators have found new evidence that the tumor necrosis factor receptor type II (TNFR2) may be a major target for immuno-oncology treatments, which induce a patient's immune system to ...

New cancer immunotherapy approach combines tumor fighting power with fewer side effects

May 16, 2016
Basic research into the dual nature of certain immune system cells has set the stage for a new approach to cancer immunotherapy that avoids some of the shortcomings associated with other methods, scientists at Dana-Farber ...

Preventing too much immunity

December 27, 2016
Scientists at the Immunology Frontier Research Center (IFReC), Osaka University, Japan, report a new molecular mechanism that could explain the cause of some autoimmune diseases.

Scientists study how some insulin-producing cells survive in type 1 diabetes

February 9, 2017
A Yale-led research team identified how insulin-producing cells that are typically destroyed in type 1 diabetes can change in order to survive immune attack. The finding may lead to strategies for recovering these cells in ...

Study exposes key requirement for regulatory T cell function

September 22, 2016
A Ludwig Cancer Research study published online September 5th in Nature Immunology illuminates a key requirement for the function of regulatory T cells—immune cells that play a critical role in many biological processes, ...

Recommended for you

Research shows possible new target for immunotherapy for solid tumors

April 24, 2018
Research from the University of Cincinnati (UC) reveals a potential new target to help T cells (white blood cells) infiltrate certain solid tumors.

Changes in breast tissue increase cancer risk for older women

April 24, 2018
Researchers in Norway, Switzerland, and the United States have identified age-related differences in breast tissue that contribute to older women's increased risk of developing breast cancer. The findings, published April ...

Targeting molecules called miR-200s and ADAR2 could prevent tumor metastasis in patients with colorectal cancer

April 24, 2018
Colorectal cancer is the third most common cancer worldwide and the third-leading cause of cancer-related deaths. The main cause of death in patients with colorectal cancer is liver metastasis, with nearly 70% of patients ...

Experimental arthritis drug prevents stem cell transplant complication

April 24, 2018
An investigational drug in clinical trials for rheumatoid arthritis prevents a common, life-threatening side effect of stem cell transplants, new research from Washington University School of Medicine in St. Louis shows. ...

Scientists develop a new model for glioblastoma using gene-edited organoids

April 24, 2018
Glioblastoma multiforme (GBM) is an incredibly deadly brain cancer and presents a serious black box challenge. It's virtually impossible to observe how these tumors operate in their natural environment and animal models don't ...

Technology used to map Mars now measuring effect of treatment on tumours

April 24, 2018
A machine learning approach for assessing images of the craters and dunes of Mars, which was developed at The University of Manchester, has now been adapted to help scientists measure the effects of treatments on tumours.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.