Scientists solve mystery of immune cells in the liver

March 20, 2017
Associate Professor Ian Cockburn and Hayley McNamara. Credit: Stuart Hay, ANU

In a discovery that could aid malaria vaccine research, scientists led by The Australian National University (ANU) have tracked immune cells and discovered a key molecule that helps them to find and kill microbes that infect the liver such as malaria.

Malaria is a disease spread by mosquitoes that kills around 500,000 people every year, mainly in tropical countries in sub-Saharan Africa and the South Pacific.

Lead researcher Hayley McNamara, a PhD scholar from The John Curtin School of Medical Research (JCSMR) at ANU, said the findings helped answer a mystery about the work of T-cells, which are a type of immune cell that look for infection throughout the body.

"We know T-cells can protect against most infections, what we still don't fully understand is how these T-cells find the rare cells infected with viruses or parasites like malaria - a needle in a haystack problem if you like,"  Ms McNamara said.

"In our research we've been able to see that some of the T-cells are specialists, able to patrol the liver hunting down infections like malaria parasites.

"We've found that without a key molecule called LFA-1, that cells don't work - they can't move quickly and can't kill malaria parasites effectively."

ANU Associate Professor Ian Cockburn said that because the T-cells were so effective at finding parasites they could be a component of future vaccines.

"What we want to do is understand how to make a vaccine that induces these types of . There are vaccines in clinical trials that work by inducing antibodies, adding a T-cell component would create stronger immunity by arming different parts of the immune system".

ANU researchers are currently working with collaborators in Australia and internationally to find a vaccine approach to make this type of T-cell.

Explore further: Why some people may not respond to the malaria vaccine

More information: H. A. McNamara et al. Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids, Science Immunology (2017). DOI: 10.1126/sciimmunol.aaj1996

Related Stories

Why some people may not respond to the malaria vaccine

December 20, 2016
Generating protective immunity against the early liver stage of malaria infection is feasible but has been difficult to achieve in regions with high rates of malaria infection. Researchers at the University of Washington ...

New clue to how mosquitoes fend off malaria

January 24, 2017
(Medical Xpress)—A team of researchers at the National Institutes of Health has found another part of the process that allows mosquitoes to keep from getting malaria even as they carry the parasite responsible for the disease ...

Studying the body's immune response to malaria infection could help scientists find life-saving vaccines

January 4, 2017
Three malaria proteins that trigger an immune response in infected individuals have been identified by A*STAR researchers. These proteins could underpin a new vaccine against the world's deadliest parasitic disease.

'Self-sabotage' prevents immune protection against malaria

December 24, 2015
Australian scientists have for the first time revealed how malaria parasites cause an inflammatory reaction that sabotages our body's ability to protect itself against the disease.

Malaria vaccine offers new mode of protection against disease

November 29, 2013
(Medical Xpress)—A novel malaria vaccine developed at Oxford University has shown promising results in the first clinical trial to test whether it can protect people against the mosquito-borne disease.

How the immune system prevents repeated malaria fever episodes in highly exposed children

April 17, 2014
Children in Mali (and many other regions where malaria is common) are infected with malaria parasites more than 100 times a year, but they get sick with malaria fever only a few times. To understand how the immune system ...

Recommended for you

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

Researchers release the brakes on the immune system

October 18, 2017
Many tumors possess mechanisms to avoid destruction by the immune system. For instance, they misuse the natural "brakes" in the immune defense mechanism that normally prevent an excessive immune response. Researchers at the ...

Gene transcription in virus-specific CD8 T cells differentiates chronic from resolving HCV

October 17, 2017
Massachusetts General Hospital (MGH) investigators have identified differences in gene transcription within key immune cells that may distinguish those individuals infected with the hepatitis C virus (HCV) who develop chronic ...

How cytoplasmic DNA triggers inflammation in human cells

October 17, 2017
A team led by LMU's Veit Hornung has elucidated the mechanism by which human cells induce inflammation upon detection of cytoplasmic DNA. Notably, the signal network involved differs from that used in the same context in ...

Early trials show potential for treating hay fever with grass protein fragments

October 13, 2017
Protein fragments taken from grass can help protect hay fever patients from allergic reactions to pollen grains.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.