Designing better drugs to treat type 2 diabetes

May 18, 2017 by Robyn Mills
Credit: CC0 Public Domain

Research led by the University of Adelaide is paving the way for safer and more effective drugs to treat type 2 diabetes, reducing side effects and the need for insulin injections.

Two studies, published in the Journal of Medicinal Chemistry and BBA-General Subjects, have shown for the first time how new potential anti-diabetic drugs interact with their target in the body at the molecular level.

These new potential drugs have a completely different action than the most commonly prescribed anti-diabetic, Metformin, which acts on the liver to reduce glucose production, and are potentially more efficient at reducing blood sugar. They target a protein receptor known as PPARgamma found in fat tissue throughout the body, either fully or partially activating it in order to lower blood sugar by increasing sensitivity to and changing the metabolism of fat and sugar.

"Type two diabetes is characterised by resistance to insulin with subsequent high which leads to serious disease. It is usually associated with poor lifestyle factors such as diet and lack of exercise," says lead researcher Dr John Bruning, with the University's School of Biological Sciences and Institute for Photonics and Advanced Sensing.

"Prevalence of type 2 diabetes in Australia alone has more than tripled since 1990, with an estimated cost of $6 billion a year. The development of safe and more efficient therapeutics is therefore becoming increasingly important.

"People with severe diabetes need to take insulin but having to inject this can be problematic, and it's difficult to get insulin levels just right. It's highly desirable for people to come off and instead use oral therapeutics."

The first study, in collaboration with The Scripps Research Institute in Florida, US, describes an honours research project by Rebecca Frkic, where 14 different versions of a which partially activates PPARgamma were produced. Partial activation can have the benefit of fewer side-effects than full activation.

The original drug, INT131, is currently being tested in clinical trials in the US but some of the versions produced at the University of Adelaide have increased potency compared to the original, with the potential to further improve the treatment of type 2 diabetes.

"A major finding of this study was being able to show which regions of the drug are most important for interacting with the PPARgamma receptor," says Dr Bruning. "This means we now have the information to design modified drugs which will work even more efficiently."

The second study, in collaboration with Flinders University, used X-ray crystallography to demonstrate for the first time exactly how a potential new drug, rivoglitazone, binds with the PPARgamma receptor. Rivoglitazone fully activates PPARgamma but has less side effects than others with this mode of action.

"Showing how this compound interacts with its target is a key step towards being able to design new therapeutics with higher efficiencies and less side-effects," says lead author Dr Rajapaksha, from Flinders University School of Medicine (now at La Trobe University). "Lack of structural information was hampering determination of the precise mechanisms involved."

Explore further: Researchers investigating ways to improve type 2 diabetes treatments

More information: Harinda Rajapaksha et al. X-ray Crystal Structure of Rivoglitazone bound to PPARγ and PPAR Subtype Selectivity of TZDs, Biochimica et Biophysica Acta (BBA) - General Subjects (2017). DOI: 10.1016/j.bbagen.2017.05.008

Rebecca L Frkic et al. Structure-Activity Relationship of 2,4-dichloro-N-(3,5-dichloro-4-(quinolin-3-yloxy)phenyl)benzenesulfonamide (INT131) Analogs for PPARγ-Targeted Antidiabetics, Journal of Medicinal Chemistry (2017). DOI: 10.1021/acs.jmedchem.6b01727

Related Stories

Researchers investigating ways to improve type 2 diabetes treatments

June 23, 2014
A better understanding of how the transcription factor Peroxisome Proliferator-Activated Receptor Gamma (PPARgamma) works is critical to find new ways to improve medications to treat type 2 diabetes. Drugs that activate PPARgamma, ...

Clues to curbing obesity found in neuronal 'sweet spot'

August 1, 2014
Preventing weight gain, obesity, and ultimately diabetes could be as simple as keeping a nuclear receptor from being activated in a small part of the brain, according to a new study by Yale School of Medicine researchers.

Study reveals protein to target in type 2 diabetes

September 1, 2016
When the body's cells don't respond normally to insulin—a condition known as insulin resistance—blood glucose levels can increase, resulting in type 2 diabetes. Researchers have long known that insulin resistance is linked ...

FDA OKs new injectable type 2 diabetes medication

July 28, 2016
(HealthDay)—The injectable drug Adlyxin (lixisenatide) has been approved to treat adults with type 2 diabetes, the U.S. Food and Drug Administration says.

Research links fatty liver disease to type 2 diabetes

October 18, 2016
Insulin resistance in the liver is a major factor in the development of type 2 diabetes, and it is almost always associated with too much fat in the liver—a condition called non-alcoholic fatty liver disease (NAFLD). The ...

Recommended for you

Scientists discover a new way to treat type 2 diabetes

July 21, 2017
Medication currently being used to treat obesity is also proving to have significant health benefits for patients with type 2 diabetes. A new study published today in Molecular Metabolism explains how this therapeutic benefit ...

Alzheimer's drug cuts hallmark inflammation related to metabolic syndrome by 25 percent

July 20, 2017
An existing Alzheimer's medication slashes inflammation and insulin resistance in patients with metabolic syndrome, a potential therapeutic intervention for a highly dangerous condition affecting 30 percent of adults in the ...

Diabetes or its precursor affects 100 million Americans

July 19, 2017
Almost one-third of the US population—100 million people—either has diabetes or its precursor condition, known as pre-diabetes, said a government report Tuesday.

One virus may protect against type 1 diabetes, others may increase risk

July 11, 2017
Doctors can't predict who will develop type 1 diabetes, a chronic autoimmune disease in which the immune system destroys the cells needed to control blood-sugar levels, requiring daily insulin injections and continual monitoring.

Diabetes complications are a risk factor for repeat hospitalizations, study shows

July 7, 2017
For patients with diabetes, one reason for hospitalization and unplanned hospital readmission is severe dysglycemia (uncontrolled hyperglycemia - high blood sugar, or hypoglycemia - low blood sugar), says new research published ...

Researchers identify promising target to protect bone in patients with diabetes

July 7, 2017
Utilizing metabolomics research techniques, NYU Dentistry researchers investigated the underlying biochemical activity and signaling within the bone marrow of hyperglycemic mice with hopes of reducing fracture risks of diabetics

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.