How epigenetics may help us slow down the ageing clock

May 11, 2017 by Wolf Reik And Oliver Stegle, The Conversation
Proud centenarian. Credit: Mike Focus/Shutterstock

Humankind has a longstanding obsession with eternal youth. Stories about elixirs of life and fountains that quench one's thirst for immortality have stirred our imagination since time immemorial. Different versions of these myths appear on every continent – even Alexander the Great's conquests are sometimes attributed to his search for a restorative river that could heal the devastation of time.

Yet despite our obsession with ageing, we still know very little about how it works. Why and how do we age? Why does everyone seem to age differently? Can we slow it down? Should we? Luckily, we now have more precise tools than mythology to investigate these questions and we have invented an instrument that can predict ageing in mice based on the activity within their genome over time – and it may even be used to slow it down.

Ageing in humans and animals is inevitable but it happens differently across species and even between different organs in the body. But we do not yet know whether the way we age is predetermined, part of an inherent biological programme, or whether is it just down to wear and tear.

Biologists distinguish between two types of age: , a measure of how well your body functions, and chronological age, which expresses how old you are. For example, a who drinks vast amounts of alcohol might have a very old liver. Worryingly, a young person with a very healthy lifestyle might also have a very old liver. It is still unclear what factors affect biological age and how.

But epigenetics, the study of how environmental factors and lifestyle choices influence our genes, is helping to shed some extra light on the issue. In particular, "DNA methylation", a mechanism used by cells to control gene expression – whether (and when) a gene is turned on or off. DNA methylation entails fixing a gene in the "off" position via the addition of methyl groups to a DNA molecule. Essentially, as we age, DNA methylation modifies the function of genes without changing their underlying DNA sequence.

Epigenetic clocks

The "epigenetic clock" is a tool for predicting both biological and chronological ageing and understanding the . The clock maps activity within a genome over time, based on DNA methylation levels at different sites.

Measuring the level of DNA methylation at certain sites on the genome can be used to estimate the biological age of a cell, tissue or organ. By comparing this age with and probing the differences, scientists can begin to understand how ageing works. They can also identify factors that influence the speed of the process, and find links with cancer, obesity, Alzheimer's disease and many other conditions.

Slowing down ageing in mice would be a giant leap in our quest for immortality. Credit: Rama/wikipeid, CC BY-SA

Steve Horvath published the most well-known example of an epigenetic clock in a 2013 paper. He analysed previously collected data by researchers who had studied methylation in both healthy and diseased human tissue, including in cancer. He then used it to chart how age affects DNA methylation levels throughout life. In doing that Horvath managed to identify 353 markers that are present throughout the bodyand change with age. The clock has wide applicability: it uses the same markers, irrespective of the DNA source within the organism, so you can use samples from any tissue or fluid in the body to predict biological age, with a respectable median error of 3.6 years.

One of the burning questions about Horvath's epigenetic clock is whether it would be possible to make subtle changes to its molecular components (the ) and observe how these changes slow down or speed up ageing. Of course, such an experiment would be impossible in humans, for both ethical and practical reasons.

Experiment in mice

To address this challenge, our team of researchers from the Babraham Institute and the European Bioinformatics Institute in Cambridge, UK, proposed a new epigenetic clock, published in Genome Biology – the first ever such tool for studying ageing in mice.

Computational methods and software for understanding biological data (bioinformatics) are critical for addressing this question and allowed us to create an accurate model of biological age. We can compare the predictions from the mouse clock to other epigenetic clocks, and draw conclusions about how mammals age. Our paper shows that changes in DNA methylation at 329 sites in the mouse genome can predict its age with an accuracy of just over three weeks.

We have validated our method by demonstrating that lifestyle changes known to shorten lifespan, for example removing the ovaries, did in fact speed up the mouse epigenetic clock. A high-fat diet, which we know is detrimental to human health, also accelerated the clock.

The next step is to delve into the inner workings of the mouse epigenetic clock and change its ticking rate. For example we could identify molecules or drugs that alter the methylation clock and then change these by genome editing or drug treatment. This should reveal whether ageing is directly influenced by DNA methylation patterns, or if ageing is a read-out of a story already written in our genomes.

We will also be exploring new approaches to rewinding the ageing clock in order to rejuvenate cells, tissues or even whole organisms. So the old quest continues, but in the quieter realms of data analysis rather than expeditions to new shores. We hope one day to look back on epigenetics as the field that changed the game, and shed light on the ageless mystery of ageing.

Explore further: Biological age-predicting 'epigenetic clock' for studying how to extend lifespan

Related Stories

Biological age-predicting 'epigenetic clock' for studying how to extend lifespan

April 5, 2017
Lots of factors can contribute to how fast an organism ages: diet, genetics and environmental interventions can all influence lifespan. But in order to understand how each factor influences aging—and which ones may help ...

Early epigenetic switches associated with childhood bone health

May 10, 2017
The health of children's bones could be determined before they are born, a new University of Southampton study has shown.

DNA clock helps to get measure of people's lifespans

January 30, 2015
Scientists have identified a biological clock that provides vital clues about how long a person is likely to live.

DNA labels predict mortality

March 20, 2017
Various chemical modifications in the genome determine whether genes are read or deactivated. Methyl labels in the DNA play a key role in this "epigenetic" regulation of gene activity. Life style and environmental factors ...

Recommended for you

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

Twin study finds genetics affects where children look, shaping mental development

November 9, 2017
A new study co-led by Indiana University that tracked the eye movement of twins finds that genetics plays a strong role in how people attend to their environment.

Boy with rare disease gets brand new skin with gene therapy

November 8, 2017
Doctors treating a critically ill boy with a devastating skin disease used experimental gene therapy to create an entirely new skin for most of his body in a desperate attempt to save his life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.