Flies the key to studying the causes of dementia

May 19, 2017, University of Plymouth
Nerve cells in normal/ healthy fly brains and in fly brains expressing the two human Tau isoforms. Credit: Dr Torsten Bossing, University of Plymouth

A research team from the University of Plymouth, University of Southampton and the Alexander Fleming Biomedical Sciences Research Center, Vari, Greece, have studied two structurally-similar proteins in the adult brain and have found that they play distinct roles in the development of dementia.

Their study is published in the prestigious journal Neurobiology of Disease.

The understanding and knowledge gained from this study could lead to effective therapies for dementia and other .

Tau proteins stabilise microtubules in the brain and nervous system. Microtubules help form the structure of cells and other functions, such as providing the rail tracks for transport between cells.

In the brain of , the abnormal clumping of Tau proteins have long been linked to changes in nerve cell activation and ultimately cell death. Two structurally different forms of Tau exist. The research team expressed these two forms of human Tau in of the Drosophila (fruit fly) brain, examining their effects on nerve cell survival and activation, fly movement and memory formation.

The results show that these two proteins differ in terms of biology and pathological potential. One leads to poor communication between nerves associated with movement. The other leads to greater neurodegeneration and impairments in learning and memory.

This is important because defects in the proteins have a bearing on neurodegenerative diseases such as dementia. Designing drugs which target each form specifically should help to improve specific symptoms.

Involved in the study from the University of Plymouth is Dr Torsten Bossing. He commented: "With each new discovery like this we move one step closer to finding effective drug treatments for debilitating neurodegenerative diseases. This is an important study carried out using nerve from fruit flies and it has the potential over the coming years to be developed through more testing and clinical trials. We firmly believe that the answer to the question of how we treat conditions such as dementia lies at this cellular level."

Explore further: Scientists discover two repurposed drugs that arrest neurodegeneration in mice

More information: Megan A. Sealey et al, Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy, Neurobiology of Disease (2017). DOI: 10.1016/j.nbd.2017.05.003

Related Stories

Scientists discover two repurposed drugs that arrest neurodegeneration in mice

April 20, 2017
A team of scientists who a few years ago identified a major pathway that leads to brain cell death in mice, have now found two drugs that block the pathway and prevent neurodegeneration. The drugs caused minimal side effects ...

In Huntington's disease, traffic jams in the cell's control center kill brain cells

May 4, 2017
Working with mouse, fly and human cells and tissue, Johns Hopkins researchers report new evidence that disruptions in the movement of cellular materials in and out of a cell's control center—the nucleus—appear to be a ...

Therapies that target dementia in early stages critical to success

March 28, 2017
Targeting dementia in the earlier stages of the condition could be critical for the success of future therapies, say researchers from the University of Bristol, who have found that the very earliest symptoms of dementia might ...

Drug candidate stabilizes essential transport mechanism in nerve cells

January 31, 2017
Tau is a key brain protein involved in Alzheimer's disease and other brain diseases. Aggregates of Tau known as "neurofibrillary tangles" have been associated with nerve cell death and cognitive decline.

Boosting a cell-protecting protein may help slow Alzheimer's disease progression

March 2, 2017
A new study of Alzheimer's disease by Fiona Kerr and Linda Partridge at University College London, uses mouse and fruit fly models to show that Keap1, which inhibits the protective protein Nrf2, is a promising target for ...

New discovery could be a major advance for neurological diseases

February 13, 2017
The discovery of a new mechanism that controls the way nerve cells in the brain communicate with each other to regulate our learning and long-term memory could have major benefits to understanding how the brain works and ...

Recommended for you

Study predicts most people with earliest Alzheimer's signs won't develop dementia associated with the disease

May 22, 2018
During the past decade, researchers have identified new ways to detect the earliest biological signs of Alzheimer's disease. These early signs, which are detected by biomarkers, may be present before a person starts to exhibit ...

Cell types underlying schizophrenia identified

May 22, 2018
Scientists at Karolinska Institutet in Sweden and University of North Carolina have identified the cell types underlying schizophrenia in a new study published in Nature Genetics. The findings offer a roadmap for the development ...

Researchers discover novel mode of neurotransmitter-based communication

May 21, 2018
Researchers at the University of California, Irvine School of Medicine have discovered the first example of a novel mode of neurotransmitter-based communication. The discovery, published in Nature Communications, challenges ...

Mice regrow brain tissue after stroke with bioengineered gel

May 21, 2018
In a first-of-its-kind finding, a new stroke-healing gel helped regrow neurons and blood vessels in mice with stroke-damaged brains, UCLA researchers report in the May 21 issue of Nature Materials.

Reading the minds of pilots on the fly

May 21, 2018
After a plane engine blew apart at 32,000 feet in the air last month, the pilot flying Southwest Flight 1380 safely brought the Boeing 737 to an emergency landing in Philadelphia. Captain Tammie Jo Shults was heralded a hero, ...

Vascular risk interacts with amyloid levels to increase age-related cognitive decline

May 21, 2018
Risk factors for heart disease and stroke appear to hasten the risk of cognitive decline in normal older individuals with evidence of very early Alzheimer's-disease-associated changes in the brain. Vascular risk factors increase ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.