Therapies that target dementia in early stages critical to success

March 28, 2017
Credit: CC0 Public Domain

Targeting dementia in the earlier stages of the condition could be critical for the success of future therapies, say researchers from the University of Bristol, who have found that the very earliest symptoms of dementia might be due to abnormal stability in brain cell connections rather than the death of brain tissue, which comes after.

A collaborative study between researchers from Bristol's School of Physiology, Pharmacology and Neuroscience, and the pharmaceutical company Eli Lilly and Company, studied the behaviour of , connections that help transmit information between the 's , in a rodent model of human frontotemporal over the course of the disease progression.

Using cutting-edge microscopy techniques the team were able to image inside the brains of rodents and found that, even before the disease causes synapses and neurons start to die off, the synaptic connections already display unusual properties.

In normal brains, a small percentage of the synapses are constantly added and lost as the brain learns new skills or makes new memories. However, in brains with dementia these percentages were quite different; the team found some synapses were very unstable while others were almost frozen. This imbalance in synapse stability was linked to changes in the way neurons were activated while the brain was working.

Their findings, published in Cell Reports, reveal that, while dementia is closely linked to the death of neurons in the brain, it is the connections between these neurons and their synapses that are impaired in earlier stages of the condition. The study highlights that the very earliest symptoms of dementia might be due to this abnormal synapse stability rather than the death of , which comes after.

Dr Mike Ashby, lead author of the study at the University of Bristol, said "The need for new treatments for dementia has never been greater, but our ability to make effective new drugs has been hampered by the fact that we don't yet fully understand the causes of this debilitating group of diseases.

"Because neurons are so closely dependent on their synaptic partners, it is possible that the changes in synapse stability could be actually part of the reason that begin to die. If this is true, then it points towards new therapeutic strategies based on treating these very early abnormalities in synaptic behaviour."

Dr Mike O'Neill, Head of Molecular Pathology at Lilly Research Laboratories, said: "The data were one of the most comprehensive longitudinal assessments of the detailed mechanisms of synapse dysfunction in a model of tauopathy in vivo. The in vivo 2-photon technique is very powerful, but is slow and labour intensive to carry out and the collaboration with Bristol has allowed us achieve this dataset in a rapid and effective way."

Dr Rosa Sancho, Head of Research at Alzheimer's Research UK, said:

"This new study adds weight to the growing body of evidence suggesting that synapses become disconnected before nerve cells themselves die. By using sophisticated microscopes, the Bristol team has gained valuable new insight into the stability of synapses and how this affects communication between nerve cells.

"There are 850,000 people in the UK living with dementia including over 4,600 in Bristol alone. Researchers the world over are hunting for ways to tackle the diseases that cause dementia and protect nerve cells from damaging disease processes. As well as improving our understanding of how synapses are affected in dementia, these interesting findings will help inform future research into drugs that could help keep nerve healthy for longer."

Explore further: New discovery could be a major advance for neurological diseases

More information: 'Altered synapse stability in the early stages of tauopathy' by Jackson et al is published Cell Reports.

Related Stories

New discovery could be a major advance for neurological diseases

February 13, 2017
The discovery of a new mechanism that controls the way nerve cells in the brain communicate with each other to regulate our learning and long-term memory could have major benefits to understanding how the brain works and ...

Drugs that alter inhibitory targets offer therapeutic strategies for autism, schizophrenia

February 21, 2017
Memories are formed at structures in the brain known as dendritic spines, which communicate with other brain cells through "synapses." The number of these brain connections decreases by half after puberty in a process termed ...

Synapse discovery could lead to new treatments for Alzheimer's disease

November 27, 2015
A team of researchers led by UNSW Australia scientists has discovered how connections between brain cells are destroyed in the early stages of Alzheimer's disease - work that opens up a new avenue for research on possible ...

Brain plasticity: How adult-born neurons get wired-in

February 2, 2017
One goal in neurobiology is to understand how the flow of electrical signals through brain circuits gives rise to perception, action, thought, learning and memories.

Molecules involved in Alzheimer's have a role in weakening of connections between neurons

May 27, 2015
Alzheimer's disease is the most common form of dementia, affecting over 44 million people worldwide. Inside the brain, Alzheimer's disease is characterized by loss of neurons, and presence of abnormal tangles and plaques ...

Study presents new insights in the search for treatments for neurological diseases

November 19, 2015
A team of researchers led by professor Patrik Verstreken (VIB/KU Leuven) has exposed the fine details of a mechanism that provides more insight in the communication between neurons. The research has clarified how damaged ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.