Mouse study looks at safety of stem cell therapy for early menopause

May 18, 2017

Now that we know that egg-making stem cells exist in adult rodents and humans and that these cells can be transplanted into mice with premature ovarian failure to produce offspring, the next question is to assess whether the offspring from the egg-making stem cells of a single adult mouse are biologically normal compared to natural births. On May 18 in the journal Molecular Therapy, researchers in China show that female mice with early menopause that receive egg-making stem cells from another mouse are capable of producing healthy pups 2 months later with no observable genetic malfunctions.

"One of our aims is to cure the disease of premature ovarian failure using female germline stem ," says senior author Ji Wu, a reproductive biologist at Shanghai Jiao Tong University. "Before this treatment can be applied to humans, we need to know the mechanism of female germline stem cell development and safety after transplantation of single mouse female germline stem cells."

Premature ovarian failure, also called early menopause, is the loss of normal ovarian function, and thereby the release of eggs, before the age of 40. The condition is rare, affecting 200,000 women in the United States per year, and is incurable, although it can be treated with hormone supplements. Multiple groups are now looking at whether stimulating tissue regeneration or using could help.

In the Molecular Therapy study, Wu and her colleagues isolated and characterized female germline stem cells from a single transgenic mouse with cells that show green fluorescence when activated by a blue laser. This allowed the researchers to observe and analyze the development of the , which were introduced to the ovaries of other mice using a fine glass needle.

Wu and colleagues found that the transplanted egg-producing stem cells exhibited a homing ability and began to differentiate into early-stage oocytes when they reached the edge of the ovary. The oocytes spent a few weeks maturing and yielded offspring within 2 months. The researchers then demonstrated that the developmental mechanisms of eggs derived from transplanted germline stem cells were similar to that of normal eggs.

"The results are exciting because it's not easy to get offspring from female germline stem cells derived from a single ," Wu says.

Wu's lab is also working to establish female egg-producing stem cell lines from scarce ovarian tissues derived from follicular aspirates—the leftover cells gathered when a clinician searches a patient for oocytes—that are produced and discarded in in vitro fertilization centers worldwide. These aspirates can yield stem cells that differentiate into eggs in the lab, with the potential to be transplanted. The study not only provides a new approach to obtain human female for medical treatment, but also opens several avenues to investigate human oogenesis in vitro.

Explore further: Making sperm from stem cells in a dish

More information: Molecular Therapy, Wu et al.: "Tracing and characterizing the development of transplanted female germline stem cells in vivo" http://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(17)30180-6 , DOI: 10.1016/j.ymthe.2017.04.019

Related Stories

Making sperm from stem cells in a dish

August 4, 2011
Researchers have found a way to turn mouse embryonic stem cells into sperm. This finding, reported in the journal Cell in a special online release on August 4th, opens up new avenues for infertility research and treatment. ...

New studies question the treatment of female infertility with stem cells

November 3, 2015
It has been claimed that a treatment for female infertility will be available by stem cell therapy. But a new study by Swedish researchers from the University of Gothenburg and Karolinska Institutet published in Nature Medicine ...

Tracking nanodiamond-tagged stem cells

August 5, 2013
A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determine ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.